DESIGN OF MACHINE ELEMENTS

Module-I

Nivish George

Poor Design

PULL

Machine Design

Definition

 Machine Design is defined as the use of scientific principles, technical information and imagination in the description of a machine or a mechanical system to perform specific functions with maximum economy and efficiency

Design is an innovative and highly iterative process

The Design Process

Market

survey

Ref: https://www.carwale.com/rollsroyce-cars/

Ref:http://www.lamborghinila.com/

Ref:https://www.cardekho.com/Tata/Tata_Nano

Product Specification

Selection of Mechanism

- Prepare Assembly and detail drawing
- Modify drawings after testing prototype

Ref:

https://blogpuneet.wordpress .com/2013/10/08/oldhamscoupling/

Course Contents

Basic Requirement

TRADITIONAL DESIGN METHODS

Design by craft evolution

Ref:https://www.123rf.com/stockphoto/bullock_cart.html

Ref:http://directboats.com/rowboats.html

Design by drawing

PROCEDURE IN DME

DESIGN SYNTHESIS

Design Synthesis is defined as the process of *creating* or *selecting* configurations, materials, shapes and dimensions for a product.

AESTHETIC CONSIDERATIONS

ERGONOMIC CONSIDERATIONS

Ergonomics is defined as the relationship between man and machine and the application of anatomical, physiological and psychological principles to solve the problems arising from man-machine relationship

- Design of driver's seat
- Layout of instrument dials and display panels
- Design of hand levers and hand wheels
- Energy expenditure in hand and foot operations
- Lighting, noise and climatic conditions in machine environment

Fig. 1.6 Man-Machine Closed-Loop System

Display instruments	Control instruments
Quantitative measurement	Easily accessible and logically positioned
State of affairs	Conform to the anatomy of human parts
Predetermined settings	Proper colour

Overview

- Need of
- Definition
- ?????
 - Requirement
- Procedure
- Tradition
- Synthesis
- Design considerations

Standardization

The obligatory norms, to which various characteristics of a product should conform.

- Standards: Set of specifications for parts, materials or processes
- Codes: Set of specifications for analysis, design, testing

Standardization

The characteristics include materials, dimensions and shape of the component, method of testing and method of marking, packing and storing of the product.

- Standards for materials, their chemical compositions, Mechanical properties and Heat Treatment
 - FG 150, FG 200, FG 220- (IS 210): Strength
 - 55Cr3- (IS 570 Part 4): Chemical composition
- Standards for shapes and dimensions of commonly used machine elements
 - Dimension and cross section of V belts (IS 2494)

Standardization

- Standards for fits, tolerances and surface finish of component
 - Fit IS 2709 (Guide for selection of fits)
 - Tolerances IS 919 (Recommendations for limits and fits for engineering)
 - Surface texture IS 10719
- Standards for testing of products
 - Testing of pressure vessels IS 2825
- Standards for engineering drawing of components
 - SP46 by BIS for engineering drawings

Standardization: Advantages

- Reduction in types and dimensions of identical components
- Reduced manufacturing facilities required for individual organisation
- Easy replacement and availability
- Reduced designer tasks
- Improved quality and reliability

Selection of Preferred sizes

• Size of the machine element with preferred

Preferred Numbers

R5	R10	R20	R40
1.00	1.00	1.00	1.00 1.06
		1.12	1.12 1.18
	1.25	1.25	1.25 1.32
		1.40	1.40 1.50
1.60	1.60	1.60	1.60 1.70
		1.80	1.80 1.90
	2.00	2.00	2.00 2.12
		2.24	2.24 2.36
2.50	2.50	2.50	2.50 2.65
		2.80	2.80

Elasticity

• Elasticity is defined as the ability of the material to regain its original shape and size after the deformation, when the external forces are removed

- Amount of deformation a metal undergoes is small
- Atoms are displaced from their original positions but they don't take up new positions

e

Plasticity

 Plasticity is defined as the ability of the material to retain the deformation produced under the load on permanent basis

- Some metals take up extensive deformations without fracture
- Atoms are permanently displaced to take up new positions

© D. M. Kochmann (2009

 ρ

Types of Materials

Factors for selection

Weighted Point Method

1	 Study of application and preparing a list of desirable properties
2	 Desirable properties are assigned values
	 Go-no-go parameters
3	 Discriminating parameters
4	 Weightage is provided

Weighted Point Method: Eg

S. No.	Property	Low alloy steel	Plain carbon steels	Stainless steel	Chromium steels
1	Ultimate tensile strength (N/mm ²)	850	850	1200	950
2	Hardenability Index	60	80	30	100

- <u>Points for ultimate tensile strength</u>
 - Sum=850+850+1200+950=3850
 - Rating strength= 850/3850= 0.22
 - Weightage index=0.22*5=1.1
- Points for hardenability
 - Sum=60+80+30+100=270
 - Rating hardenability index= 60/270=0.222
 - Weightage index= 0.22*3=0.666

Stress Concentration

The localization of high stresses due to the <u>irregularities</u> present in the component and <u>abrupt</u> <u>changes</u> of cross-section

Causes of stress concentration

• Variation in properties

Load application

• Abrupt changes in dimension

• Discontinuities in the component

Machining Scratches

Stress Concentration Factor (K_t)

Stress Concentration factors

Fig. 5.2 Stress Concentration Factor (Rectangular Plate with Transverse Hole in Tension or Compression) Fig. 5.3 Stress Concentration Factor (Flat Plate with Shoulder Fillet in Tension or Compression)

Stress Concentration factors

Fig. 5.4 Stress Concentration Factor (Round Shaft with Shoulder Fillet in Tension)

Fig. 5.5 Stress Concentration Factor (Round Shaf with Shoulder Fillet in Bending)

Stress Concentration factors

- Ductile materials under static load
- Ductile materials under fluctuating load
- Brittle materials

Reduction of Stress Concentration

Additional Notches and Holes in Tension Member

- Use of multiple notches
- Drilling additional holes
- Removal of undesired material

Reduction of Stress Concentration

- Fillet radius, undercutting and notch for member
 - in bending

- Fillet
- Undercut
- Notch
- Drilling additional holes for shaft

- Fillet
- Symmetrical holes

Reduction of Stress Concentration

 Reduction of stress concentration in threaded members

- Undercut
- Reduction in Shank diameter

Simulation results

• Abrupt changes in section

1.182	_	175.206	349.23	-	523.254		697.278	
	88.194	26	2.218	436.242		610.266		784.29

Problem??

A flat plate subjected to a tensile force of 5 kN is shown in Figure. The plate material is of grey cast iron FG 200 and the factor of safety is 2.5. Determine the thickness of the plate.

Objective: Find t, <u>Given data (Check for consistency in units)</u> P=5kN $S_{ut}=200 \text{ N/mm}^2$ (fs)=2.5 D=45mm,d=30mm, w=15mm, r= 5mm $\sigma_{max} = \frac{S_{ut}}{f_S} \qquad \frac{D}{d} \qquad \frac{r}{d}$

Tolerances

- Permissible variation in dimensions of the component
- Types: Unilateral and bilateral

Fits

Very loose 1 When two HOLE SHAFT parts are to 2 be HOLE SHAFT assembled, the Loose relationship 3 resulting HOLE SHAFT between their sizes Tight before assembly

Classification-Fits

Classification-Fits

Ref. Design of Machine elements, Third edition, V B Bhandari

Classification-Fits

Classification- Hole basis tolerance system (H)

Ref. Design of Machine elements, Third edition, V B Bhandari

Classification- Shaft basis tolerance system (h)

Ref. Design of Machine elements, Third edition, V B Bhandari

BIS SYSTEM: Tolerance

BIS SYSTEM: Tolerance

Table 3.2 Tolerances for holes of sizes up to 100 mm (H5 to H11)

Dian	neter	Н							
steps	in mm	5	6	7	8	9	10	H	5-11
over	10				es				ei
0	3	+4	+6	+10	+14	+25	+40	+60	0
3	6	+5	+8	+12	+18	+30	+48	+75	0
6	10	+6	+9	+15	+22	+36	+58	+90	0
10	18	+8	+11	+18	+27	+43	+70	+110	0
18	30	+9	+13	+21	+33	+52	+84	+130	0
30	50	+11	+16	+25	+39	+62	+100	+160	0
50	80	+13	+19	+30	+46	+74	+120	+190	0
80	100	+15	+22	+35	+54	+87	+140	+220	0

Ref. Design of Machine elements, Third edition, V B Bhandari

TOLERANCE GRADING

Grade of Tolerance: Group of tolerances, which are considered to have the same level of accuracy for all basic sizes.

Tolerance grade	Manufacturing process and applications	Machine required		
IT01, IT0 IT1 to IT5	Super finishing process, such as lapping, diamond boring etc. Use: Gauges	Super finishing machines		
IT6	Grinding	Grinding machines		
IT7	Precision turning, broaching, honing	Boring machine, honing machine		
1T8	Turning, boring and reaming	Lathes, capstan and automats		
IT9	Boring	Boring machines		
IT10	Milling, slotting, planing, rolling and extrusion	Milling machine, slotting machine, planing machine and extruders		
IT11	Drilling, rough turning	Drilling machine, lathes		
IT12, IT13, IT14	Metal forming processes	Presses		
IT15	Die casting, stamping	Die casting machine, hammer machine		
IT16	Sand casting	-		

BIS SYSTEM:FITS

Basic size common to both components followed by symbols for tolerance of each component

50H9/d9

50H9 - d9

Selection of fit is based on the clearance required for the desired applications