COURSE HANDOUT-S5 CU

101009/IT500A SOFTWARE DESIGN WITH UML

COURSE INFORMATION SHEET

PROGRAMME: COMPUTER SCIENCE AND	DEGREE: BTECH				
BUSINESS SYSTEMS					
COURSE: SOFTWARE DESIGN WITH UML	SEMESTER: V CREDITS: 3				
COURSE CODE: 101009/IT500A	COURSE TYPE: CORE				
REGULATION: 2021					
COURSE AREA/DOMAIN: SYSTEM	CONTACT HOURS: 2+1(Tutorial)				
SOFTWARE	hours/Week.				
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: NA				
ANY): NO					

SYLLABUS:

UNIT	DETAILS	HOURS
I	Introduction to on Object Oriented Technologies and the UML Method. Software development process: The Waterfall Model vs. The Spiral Model, The Software Crisis, description of the real world using the Objects Model, Classes, inheritance and multiple configurations, Quality software characteristics, Description of the ObjectOriented Analysis process vs. the Structure Analysis Model.	8
II	 Introduction to the UML Language Standards, Elements of the language, General description of various models, The process of Object-Oriented software development. Description of Design Patterns. Technological Description of Distributed Systems. Requirements Analysis Using Case Modeling Analysis of system requirements. Actor definitions, writing a case goal, Use Case Diagrams, Use Case Relationships 	13
III	Transfer from Analysis to Design in the Characterization Stage: Interaction Diagrams. Description of goal, Defining UML Method, Operation, Object Interface, Class. Sequence Diagram. Finding objects from Flow of Events. Describing the process of finding objects using a Sequence Diagram. Describing the process of finding objects using a Collaboration Diagram.	13

V	 The Logical View Design Stage: The Static Structure Diagrams. The Class Diagram Model, Attributes descriptions, Operations descriptions, Connections descriptions in the Static Model, Association, Generalization, Aggregation, Dependency, Interfacing, Multiplicity. Package Diagram Model. Description of the model, White box, black box, Connections between packagers, Interfaces., Create Package Diagram, Drill Down Dynamic Model: State Diagram / Activity Diagram. Description of the State Diagram, Events, Handling, Description of the Activity Diagram, Exercise in State Machines. 	16
V	 Component Diagram Model. Physical Aspect. Logical Aspect, Connections and Dependencies, User face Initial DB design in a UML environment. Deployment Model. Processors, Connections, Components ,Tasks, Threads, Signals and Events. 	10
	TOTAL HOURS	60

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modelling Language User Guide, Pearson Education.
T2	Bernd Bruegge and Allen H. Dutoit,Object-Oriented Software Engineering using UML, Patterns, and Java
R1	Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides,Design Patterns: Elements of Reusable Object-Oriented Software

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
101009/IT400C	Software Engineering	Functionalities of software and	S3
		various designing concepts	

COURSE OUTCOMES:

Students will be able to

101009/IT500A.1	Understand the concepts and principles of	Cognitive Knowledge
	object-oriented programming concepts and	Level: Understand
	the software development process models.	
101009/IT500A.2	Interpret the contemporary issues and dis	Cognitive Knowledge
	about analysis and coding standards.	Level: Understand
101009/IT500A.3	Describe the basic resource management	Cognitive Knowledge
	responsibilities of dynamic diagrams of the UM	Level: Understand
101009/IT500A.4	Analyze the design methods and modeling	Cognitive Knowledge
	techniques.	Level: Analyze
101009/IT500A.5	Design UML diagrams for real time	Cognitive Knowledge
	problems.	Level: Create

CO-PO AND CO-PSO MAPPING

\square	PO	Р	PO	PO	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
										1					
										0					
101009/IT	3	2	2	2	2	-	-	-	1	1	1	1	1	-	-
500A.1															
101009/IT	3	2	3	2	2	-	-	-	2	1	1	1	1	2	-
500A.2															
101009/IT	3	2	3	2	2	-	-	-	-	-	-	2	-	-	-
500A.3															
101009/IT	3	2	3	2	2	-	-	-	-	-	-	-	-	2	-
500A.4															
101009/IT	3	2	3	2	2	-	-	-	1	1	1	2	-	2	-
500A.5															

1-LOW, 2-MEDIUM, 3-HIGH

JUSTIFICATIONS FOR CO-PO MAPPING

Mapping	LOW/MEDIUM/H	Justification
	IGH	

101009/IT5	HIGH	Students get the knowledge about the concepts, principles
00A.1-P01		of object-oriented programming concepts and the software
		development process models
101009/IT5	MEDIUM	Students will be able to identify and analyze the concepts,
00A.1- PO2		principles of object-oriented programming concepts and
		the software development process models
101009/IT5	MEDIUM	Students will be able to design and develop concepts,
00A.1- PO3		principles of object-oriented programming concepts and
		the software development process models
101009/IT5	MEDIUM	Students will acquire to conduct the analysis of develop
00A.1- PO4		concepts, principles of object-oriented programming
		concepts and the software development process models
101009/IT5	MEDIUM	Student could apply the methods and the corresponding
00A.1- PO5		tools to develop the software development models
101009/IT5	LOW	Students will be able to works as an individual or a team to
00A.1- PO9		analyse and develop the software development process
		models
101009/IT5	LOW	Students will be able to communicate effectively on
00A.1- P010		complex object-oriented programming concepts and the
		software development process models
101009/IT5	LOW	Students could demonstrate knowledge and understanding
00A.1-P011		the analysis of develop concepts, principles of object-
		oriented programming concepts and the software
		development process models
101009/IT5	LOW	Students could understand and recognize the need of
00A.1-P012	2011	software development process models and the basic
		concepts
101009/IT5	LOW	Students will be able to acquire skills to anlayse and
00A.1-PSO1		develop concepts and principles of object-oriented
		programming concepts and the software development
		process models.
101009/IT5	HIGH	Students get the knowledge to interpret the contemporary
, 00A.2-PO1		issues and discuss about analysis and coding standards.
101009/IT5	MEDIUM	Students will able to identify and analyze the problems of
00A.2-PO2		coding standards
101009/IT5	HIGH	Students gain the ability to design and develop the
00A.2-PO3		solutions for contemporary issues and analyse the coding
		standards
101009/IT5	MEDIUM	Information acquired from the investigations of complex

00A.2-PO4		problems and discuss about analysis and coding standards
101009/IT5	MEDIUM	Able to apply the modern tools to design, analyze and solve
00A.2-PO5		the contemporary issues and coding standards
101009/IT5	MEDIUM	Students will be able to works as an individual or a team to
00A.2-PO9		design, analyze and solve the contemporary issues and
		coding standards
101009/IT5	LOW	Students will be able to communicate effectively to design,
00A.2-PO10		analyze and solve the contemporary issues and coding
		standards
101009/IT5	LOW	Students could demonstrate knowledge and the solve the
00A.2-P011		contemporary issues and coding standards
101009/IT5	LOW	Students could understand and recognize the needs of
00A.2-P012		coding standards analysis
101009/IT5	LOW	Students will be able to acquire skills to Interpret the
00A.2-PSO1		contemporary issues and discuss about analysis and coding
		standards
101009/IT5	LOW	Students will be able to acquire skills to Interpret the
00A.2-PSO2		contemporary issues and discuss about analysis and coding
		standards
101009/IT5	HIGH	Students get the knowledge about the basic resource
00A.3-P01		management responsibilities of dynamic diagrams of the
		UML.
101009/IT5	MEDIUM	Students will able to identify and analyze the basic
00A.3-PO2		resource management responsibilities of dynamic
		diagrams of the UML
101009/IT5	HIGH	Students gain the ability to design and develop the basic
00A.3-PO3		resource management responsibilities of dynamic
		diagrams of the UML
101009/115	MEDIUM	Information acquired from the investigations of complex
00A.3-P04		problems and discusses about the basic resource
		management responsibilities of dynamic diagrams of the
101009/115	MEDIUM	Able to apply the modern tools to design, analyze and solve
004.5-205		the contemporary issues in the resource management
101000 /፲፹፫	LOW	Students could understand and recognize the needs of
101009/115	LUW	resource management responsibilities of dynamic
004.3-1012		diagrams of the IIMI
		ulagrams of the UML

101009/IT5	HIGH	Students get the knowledge about analyze of design
00A.4-P01		methods and modeling techniques
101009/IT5	MEDIUM	Students will able to identify and analyze of design
00A.4-PO2		methods and modeling techniques
101009/IT5	HIGH	Students gain the ability to design and develop the design
00A.4-PO3		methods and modeling techniques
101009/IT5	MEDIUM	Information acquired from the investigations of complex
00A.4-PO4		problems and discusses about analyze of design methods
		and modeling techniques
101009/IT5	MEDIUM	Able to apply the modern tools to analyze design methods
00A.4-P05		and modeling techniques
101009/IT5	MEDIUM	Students will be able to acquire skills to interpret the
00A.4-PSO2		contemporary issues in the designing methods and
		modeling techniques
101009/IT5	HIGH	Students get the knowledge about the designing of UML
00A.5-PO1		diagrams for real time problems
101009/IT5	MEDIUM	Students will able to identify and analyze of design of UML
00A.5-PO2		diagrams for real time problems
101009/IT5	HIGH	Students gain the ability to design and develop the design
00A.5-PO3		of UML diagrams for real time problems
101009/IT5	MEDIUM	Information acquired from the investigations of complex
00A.5-PO4		problems and discusses about the designing of UML
		diagrams for real time problems
101009/IT5	MEDIUM	Able to apply the modern tools to design UML diagrams for
00A.5-PO5		real time problems
101009/IT5	LOW	Students will be able to works as an individual or a team to
00A.5-P09		design to design UML diagrams for real time problems
101009/IT5	LOW	Students will be able to communicate effectively to design
00A.5-P010		UML diagrams for real time problems
101009/IT5	LOW	Students could demonstrate knowledge and the solve the
00A.5-P011		contemporary issues in design phase of UML diagrams
101009/IT5	MEDIUM	Students could understand and recognize the needs of UML
00A.5-P012		designing diagrams for real time problems
101009/IT5	MEDIUM	Students will be able to acquire skills to Interpret the

00A.5-PSO2	contemporary issues in the designing of UML diagrams for
	real time problems

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl.No	Description	PO mapping	Proposed Actions		
1	Service-Oriented	P01,P03,PS01,P0S2	Learning Materials		
	Architecture		provided		

WEB SOURCE REFERENCES:

1	https://www.lucidchart.com/pages
2	https://www.javatpoint.com/uml-diagrams
3	https://www.geeksforgeeks.org/introduction-to-uml-diagrams/

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	STUD. ASSIGNMENT	WEB RESOURCES
LCD/SMART	STUD. SEMINARS	□ ADD-ON COURSES
BOARDS		

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	STUD. SEMINARS	TESTS/MODEL EXAMS	UNIV. EXAMINATION
🗆 STUD. LAB	STUD. VIVA	MINI/MAJOR	□ CERTIFICATIONS
PRACTICES		PROJECTS	
🗆 ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE)	(ONCE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS	□ OTHERS
BY EXT. EXPERTS	

Prepared by

Approved by

Vidhya Vijayan

Dr. Neeba E A (HOD)

Course plan

Sl.No	Planned	Iours			
1.	Software development process: The Waterfall Modelvs. The Spiral Model	2			
2.	UML -Introduction, Basic Elements inUML	2			
3.	Software Crisis, description of thereal world using the Objects Model	3			
4.	Software qualityCharacteristics	4			
5.	Classes, inheritance andmultiple configurations	2			
6.	Quality softwarecharacteristics, Description of theObject- Oriented	4			
7.	Analysis processvs. the StructureAnalysis Model	1			
8.	Standards, Elements of the language, Generaldescription of various models				
9.	Description of Design Patterns 1				
10.	General description of various models				
11.	The process of Object-Orientedsoftware development				
12.	Description of Design Patterns.Technological Description of Distributed Systems.				
13.	Writing a casegoal, Use CaseDiagrams, UseCase Relationships.	1			
14.	Transfer fromAnalysis to Design in the Characterization Stage: InteractionDiagrams. Description ofgoal,	2			
15.	Defining UMLMethod, Operation, ObjectInterface, Class.	1			
16.	Sequence Diagram. Findingobjects from Flowof Events. 2 Describing the process of findingobjects using a Sequence 2 Diagram. 2				
17.	Describing the process of findingobjects using a CollaborationDiagram.	2			
18.	Introduction -Interaction diagram	4			
19.	Describing the process of findingobjects using a Sequence 2 Diagram				

20.	Signals and Events	1
21.	Describing the process of findingobjects using a Collaboration Diagram.	1
22.	The Logical ViewDesign Stage: TheStatic Structure Diagrams.	1
23.	The Class Diagram Model, Attributes descriptions	3
24.	Operations descriptions, Connections descriptions in the Static Model	1
25.	Association, Generalization, Aggregation	2
26.	Dependency,Interfacing, Multiplicity	2
27.	Package DiagramModel. Description of themodel	3
28.	White box, blackbox, Connectionsbetween packagers	1
29.	Connections between packagers, Interfaces., CreatePackage Diagram,Drill Down	1
30.	Description of theState Diagram, Events, Handling	3
31.	Description of theActivity Diagram,Exercise in State Machines.	3
32.	Component Diagram Model.Physical Aspect.Logical Aspect, Connections and Dependencies	3
33.	User face InitialDB design in a UML environment.	1
34.	DeploymentModel.	3
35.	Processors, Connections	1
36.	Components ,Tasks, Threads	1

Assignment topics with submission dates

- 1. Differentiate between Analysis processvs. the StructureAnalysis Model. 16th October 2023.
- 2. Implement a Deployment diagram Hotel management system. 16th December 2023.

101009/IT500B COMPILER DESIGN

COURSE INFORMATION SHEET

PROGRAMME: COMPUTER SCIENCE &	DEGREE: B TECH
BUSINESS SYSTEM	
COURSE: COMPILER DESIGN	SEMESTER: 5 CREDITS: 3
COURSE CODE: 101009/IT500B	COURSE TYPE: CORE
REGULATION: 2021	
COURSE AREA/DOMAIN: SYSTEM	CONTACT HOURS: 3 hours/Week.
SOFTWARE CONCEPTS	
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: COMPILER DESIGN
ANY): 101009/IT522G	LAB (LEX & YACC)

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	Introduction to compilers – Analysis of the source program, Phases of a	7
	compiler, grouping of phases, compiler writing tools.	
	Lexical Analysis (Scanner): The role of Lexical Analyzer, Input Buffering,	
	Specification of Tokens using Regular Expressions, Review of Finite	
	Automata, Recognition of Tokens	
II	Context-free languages and grammars, push-down automata, LL(1)	10
	grammars and top-down parsing, operator grammars, LR(0), SLR(1),	
	LR(1), LALR(1) grammars and bottom-up parsing, ambiguity and LR	
	parsing, LALR(1) parser generator.	
III	Attribute grammars, syntax directed definition, evaluation and flow of	11
	attribute in a syntax tree.	
	Symbol Table: Basic structure, symbol attributes and management. Run-	
	time environment: Procedure activation, parameter passing, value	
	return, memory allocation, scope.	
IV	Intermediate Code Generation: Translation of different language	10
	features, different types of intermediate forms.	
	Code Improvement (optimization): control-flow, data-flow dependence	
	etc.; local optimization, global optimization, loop optimization, peep-	
	hole optimization etc.	
V	Architecture dependent code improvement: instruction scheduling (for	8
	pipeline), loop optimization (for cache memory) etc. Register allocation	
	and target code generation.	
	Advanced topics: Type systems, data abstraction, compilation of Object-	
	Oriented features and non-imperative programming languages.	
	TOTAL HOURS	46

TEXT/REFERENCE BOOKS:

T/	BOOK TITLE/AUTHORS/PUBLICATION
R	
T1	V. Aho, R. Sethi and J. Ullman, Compilers: Principles, Techniques and Tools, 2 nd Edition, Addison
	Wesley, 2006.
T2	Levine R. John, Tony Mason and Doug Brown, Lex & Yacc, 2nd Edition, O'Reilly Media, Inc., 1992.
R1	Bjarne Stroustrup, The Design and Evolution of C++, 1st Edition, Addison-Wesley Professional,
	1994.
R2	Kenneth C. Louden, Compiler Construction – Principles and Practice, Cengage Learning Indian
	Edition, 2006.
R3	Tremblay and Sorenson, The Theory and Practice of Compiler Writing, Tata McGraw Hill &
	Company,1984.
R4	Randy Allen, Ken Kennedy, Optimizing Compilers for Modern Architectures: A Dependence-based
	Approach, Morgan Kaufmann Publishers, 2008.
R5	Steven S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann
	Publishers – Elsevier Science, India, Indian Reprint 2008.

COURSE PRE-REQUISITES:

Basic Programming in Python, Data Structures

COURSE OBJECTIVES:

This course studies programming language translation and compiler design concepts; language recognition symbol table management, semantic analysis, code optimization and code generation.

COURSE OUTCOMES:

After the completion of the course the student will be able to

CO1: Explain the concepts and different phases of compilation with compile time error handling and represent language tokens using regular expressions, context free grammar and finite automata and design lexical analyzer for a language.

CO2: Compare top down with bottom-up parsers and develop appropriate parser to produce parse tree representation of the input.

CO3: Design syntax directed translation schemes for a given context free grammar.

CO4: Generate intermediate code for statements in high level language and apply optimization techniques to intermediate code and generate machine code for high level language program.

CO5: Explain the concepts of architecture dependent code improvement and compilation of object-oriented programming languages.

CO-PO MAPPING

	P01	P02	P03	P04	РО 5	P0 6	P0 7	РО 8	РО 9	PO1 0	P01 1	P012
CO1	3	2	2	2	2				1	1	1	1
CO2	3	2	3	2	2				2	1	1	1
CO3	3	2	3	2	2							2
CO4	3	2	3	2	2							
CO5	3	2	3	2	2				1	1	1	2

JUSTIFICATIONS FOR CO-PO MAPPING

MAPPING	LOW/MEDIUM/HIG	JUSTIFICATION
	Н	
C01-P01	Н	Students will acquire knowledge about phases of compilation
C01-P03	L	Students will be able to understand the role of Lexical Analyzer in Compilation Process
C01-P012	Н	Information acquired from the compilation phases provides lifelong learning in the context of Compiler Construction.
CO1-PSO2	М	Having the knowledge about the compiler construction tools helps in the study and design of compiler.
C02-P02	Н	Knowledge of Ambiguities in the context free Grammar helps students in problem analysis.
C02-P03	М	Students gain the ability to design syntax analyzer tool used for compilation process.
CO2-PO4	Н	Studies about the various parsing techniques helps the students to understand about Parsing Process.
C02-P012	Н	Students will be able to analyze different parsing techniques used for Compilation
C03-P02	Н	Studies about the type checking process helps in the semantic analysis phase of compilation.
СОЗ-РОЗ	Н	Understanding the various storage al location strategies helps in organization of information in the Run Time Environment of Compilation.

CO3-PO12	L	Information acquired from bottom up and top down evaluation provides lifelong learning in the compilation
CO3-PSO3	Н	Students could apply the knowledge of Overloaded and Polymorphic function used in semantic Analysis Phase of Compiler.
CO4-PO1	Н	Students gain the ability to learn about the Intermediate code generation in compilation process.
CO4-PO2	Н	Students will understand the need of intermediate representation for the generation of target code .
CO4-PO12	М	The students could understand and implement different types Intermediate Representation of code used for generating target code.
CO4-PSO2	М	Information acquired from the fundamentals of intermediate representation leads to implementation of target code
C05-P01	Н	Students will be obtain basic knowledge of code optimization
CO5-PO2	Н	Information acquired from the sources of optimization helps in implementation of target code
C05-P012	М	Students could apply the knowledge of code optimization in Compiler Construction
CO5-PSO2	М	Students will be acquiring knowledge about code improving transformation.
CO6-PO1	Н	Students will be acquiring knowledge about Instruction Scheduling
C06-P04	М	Students will be acquiring knowledge about Register Allocation
CO6-PO12	Н	Students will be acquiring knowledge about Instruction Level Optimization
C06-PS03	М	Students will be acquiring knowledge about Design issues in Code Generation for a Target Processor

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

S. NO	ТОРІС	PO MAPPING
1	ANTLR	4
2	JAVACC	4

WEB SOURCE REFERENCES:

-	
1	https://onlinecourses.nptel.ac.in/noc21_cs07/preview
2	https://www.javatpoint.com/compiler-tutorial
3	http://www.diku.dk/~torbenm/Basics/basics_lulu2.pdf
4	https://www.cse.iitd.ac.in/~sak/courses/cdp/slides.pdf
5	http://javacc.java.net/
6	http://www.engr.mun.ca/~theo/JavaCC-Tutorial/javacc-tutorial.pdf

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

☑ CHALK & TALK	☑ STUD. ASSIGNMENT	☑ WEB RESOURCES
LCD/SMART BOARDS	□ STUD. SEMINARS	□ ADD-ON COURSES

ASSESSMENT METHODOLOGIES-DIRECT

☑ ASSIGNMENTS	□ STUD. SEMINARS	☑ TESTS/MODEL		☑ UNIV.
		EX	AMS	EXAMINATION
🗹 STUD. LAB	🗆 STUD. VIVA		MINI/MAJOR	□ CERTIFICATIONS
PRACTICES		PR	OJECTS	
□ ADD-ON COURSES	□ OTHERS			
ASSESSMENT METHODOLOGIES-INDIRECT				
ASSESSMENT OF COURSE OUTCOMES (BY			☑ STUDENT FEED	BACK ON FACULTY
FEEDBACK, ONCE)			(ONCE)	
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY			□ OTHERS	
EXT. EXPERTS				

Prepared by

Mr. Tinku Soman Jacob

Approved by (HOD)

COURSE PLAN

No	Торіс	No. of Lectures				
1	Module 1: INTRODUCTION	<u> </u>				
1.1	Introduction to compilers – Analysis of the source program, Phases of a compiler, grouping of phases, compiler writing tools.	3 Hours				
1.2	Lexical Analysis: The role of Lexical Analyzer, Input Buffering, Specification of Tokens using Regular Expressions, Review of Finite Automata, Recognition of Tokens.					
2	Module 2: SYNTAX ANALYSIS					
2.1	Syntax Analysis: Review of Context-Free Grammars – Derivation trees and Parse Trees, Ambiguity.	2 Hours				
2.2	Top-Down Parsing: Recursive Descent parsing, Predictive parsing, LL(1) Grammars.	3 Hours				
2.3	Bottom-Up Parsing: Shift Reduce parsing – Operator precedence parsing (Concepts only)	5 Hours				
	LR parsing – Constructing SLR parsing tables, Constructing, Canonical LR parsing tables and Constructing LALR parsing tables.					
3	Module 3: Semantic Analysis					
3.1	Syntax directed definitions, Bottom- up evaluation of S-attributed definitions, L- attributed definitions	3 Hours				
3.2	Top-down translation, Bottom-up evaluation of inherited attributes	3 Hours				
3.3	Symbol Table: Basic structure, symbol attributes and management. Run-time environment: Procedure activation, parameter passing, value return, memory allocation, scope.	5 Hours				
4	Module 4: Intermediate Code Generation and Code Optimization					
4.1	Intermediate Code Generation (ICG): Intermediate languages – Graphical representations, Three-Address code, Quadruples, Triples	2 Hours				
4.2	Translation of declarations, assignments, intermediate code generation for control flow, Boolean expressions and procedure calls	4 Hours				
4.3	Code Improvement (optimization): control-flow, data-flow dependence etc.; local optimization, global optimization, loop optimization, peep-hole optimization etc.	4 Hours				

5	Module 5: Architecture dependent code improvement	
5.1	Architecture dependent code improvement: instruction scheduling (for pipeline), loop optimization (for cache memory) etc. Register allocation and target code generation.	4 Hours
5.2	Advanced topics: Type systems, data abstraction, compilation of Object-Oriented features and non-imperative programming languages.	4 Hours

ASSIGNMENT

1.

Submission Date 27/10/23

- 1. Write the difference between NFA & DFA.
- 2. Explain incremental and cross compiler.
- 3. What is LEX? Explain the structure of LEX program.
- 4. Consider E -> E or T | T
 - T -> T and F | F

F -> not F | (E) | true | false

Remove left recursion from grammar. Construct a predictive parsing table.

- 5. Write a note on FA.
- 6. Is the grammar S->S(S)S/ E ambiguous? Justify your answer.
- 7. Apply bootstrapping to develop a compiler for a new high level language P on machine N.
- 8. Demonstrate the identification of handles in operator precedence parsing?
- 9. Design a recursive descent parser for the grammar
 - E->E + T | T T->T*F | F F->(E) | id
- 10. With the aid of diagrams discuss the structure of a compiler in detail for a source language statement a = b * c -2, where a, b and c are float variables, * and represents multiplication and subtraction on same data types through each phase.

2.

Submission Date 18/12/23

1. Explain instruction scheduling (for pipeline), loop optimization (for cache memory)

2. Explain the compilation of Object-Oriented features and non-imperative programming languages.

101009/MS500C FUNDAMENTALS OF MANAGEMENT

COURSE CODE	COURSE NAME	L	Т	Р	CREDIT	YEAR OF INTRODUCTION
101009/MS500C	FUNDAMENTALS OF MANAGEMENT	2	0	0	2	2021

1. Preamble

This course introduces the basic concepts of the subject Management, as a necessary complement to Engineering studies in order that the students may understand organisations and function appropriately in their future roles as employees and managers.

2. Prerequisite

Basic awareness that is expected of plus two level.

3. Syllabus

Module 1 : Management Theories

Concept and Foundations of Management - Evolution of Management Thoughts [Pre-Scientific Management Era (before 1880) - Classical management Era (1880-1930 - Neoclassical Management Era (1930-1950) - Modern Management era (1950-on word) -Contribution of Management Thinkers: Taylor, Fayol, Elton Mayo etc.

Module 2 : Functions of Management

Planning, Organizing, Staffing, Directing, Controlling.

Module 3 : Organization Behavior

Introduction, Personality – Perception - Learning and Reinforcement – Motivation - Group Dynamics - Power & Influence - Work Stress and Stress Management - Decision Making -Problems in Decision Making - Decision Making - Organizational Culture - Managing Cultural Diversity. Leadership: Concept – Nature – Importance - Attributes of a leader developing leaders across the organization - Leadership Grid.

Module 4 : Organizational Design

Classical - Neoclassical and Contingency approaches to organizational design - Organizational theory and design - Organizational structure (Simple Structure, Functional Structure, Divisional Structure, Matrix Structure)

Ethics and Business - Ethics of Marketing & advertising - Ethics of Finance & Accounting - Decision–making frameworks - Business and Social Responsibility - International Standards - Corporate Governance - Corporate Citizenship - Corporate Social Responsibility.

4. Text Books

1. Richard L. Daft, *Understanding the Theory and Design of Organizations*, South-Western, 2013.

5. Reference Books

1. Stephen P. Robbins, Timothy A. Judge, Neharika Vohra, *Organizational Behavior*, Eighteenth Edition, Pearson Education, 2018.

6. Course Outcomes

After the completion of the course the student will be able to

CO1: Understand the different perspectives / schools of thought of the subject 'Management'.

CO2: Explain the functions of 'Management'.

CO3: Explain the basics of 'Organisational Behaviour'.

CO4: Explain the different organisational structures

CO5: Explain the importance of ethics in Business.

7. Mapping of Course Outcomes with Program Outcomes

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	-	-	-	-	-	-	-	1	2	-	3	-
C02	-	-	-	-	-	-	-	-	2	-	3	-
C03	-	-	-	-	-	-	-	1	3	2	1	-
C04	-	-	-	-	-	-	-	-	2	1	2	-
C05	-	-	-	-	-	-	-	3	1	-	-	-

101009/MS500D BUSINESS STRATEGY

COURSE CODE	COURSE NAME	L	Τ	Р	CREDIT	YEAR INTRODUCTION	OF
101009/MS500D	BUSINESS STRATEGY	2	0	0	2	2021	

Syllabus

Module – I

Introduction to Strategic Management

- Importance of Strategic Management
- Vision and Objectives
- Schools of thought in Strategic Management
- Strategy Content, Process, and Practice
- Fit Concept and Configuration Perspective in Strategic Management

Module – II

Internal Environment of Firm- Recognizing a Firm's Intellectual Assets

- Core Competence as the Root of Competitive Advantage
- Sources of Sustained Competitive Advantage
- Business Processes and Capabilities-based Approach to Strategy

Module – III

External Environments of Firm- Competitive Strategy

- Five Forces of Industry Attractiveness that Shape Strategy
- The concept of Strategic Groups, and Industry Life Cycle
- Generic Strategies
- Generic Strategies and the Value Chain

Module – IV

Corporate Strategy, and Growth Strategies

- The Motive for Diversification
- Related and Unrelated Diversification
- Business Portfolio Analysis
- Expansion, Integration and Diversification
- Strategic Alliances, Joint Ventures, and Mergers & Acquisitions

Module- V

Strategy Implementation: Structure and Systems

- The 7S Framework
- Strategic Control and Corporate Governance

Assignment:

- Latest business events would be discussed in class and students should be ready to discuss these events (in groups). The topic will be mentioned beforehand. Students are required to meet in groups before coming to class and prepare on the topic.
- There will be periodic homework assignments relating to the course concepts or mini-cases. Specific instructions will be given separately.

Text Books:

1. Robert M. Grant (2012). Contemporary Strategic Management, Blackwell, 7th Edition.

Reference Books:

1. M.E. Porter, Competitive Strategy, 1980.M.E. Porter, Competitive Advantage, 1985 Richard Rumelt (2011). Good Strategy Bad Strategy: The Difference and Why It Matters.

101009/EN500E BUSINESS COMMUNICATION AND VALUE SCIENCES III

COURSE INFORMATION SHEET

PROGRAMME: COMPUTER SCIENCE AND	DEGREE: B.TECH
BUSINESS SYSTEMS	

COURSE: BUSINESS COMMUNICATION AND VALUE SCIENCES III	SEMESTER: V CREDITS: 2
COURSE CODE: 101009/EN500E	COURSE TYPE: Mandatory Credited Course
REGULATION: 2021	
COURSE AREA/DOMAIN: HUMANITIES	CONTACT HOURS: 3 hours/week

SYLLABUS:

UNIT	DETAILS
Т	Basic principles of SWOT and Life Positions - Apply SWOT in real-life scenarios - Recognize
-	how motivation helps real-life - Leverage motivation in real-life scenarios.
	Identify pluralism in cultural spaces - Differentiate between the different cultures in India
II	- Global, glocal and translocation - Cross-cultural communication: Implications, common
	mistakes and application - Roles and relations of different genders.
III	Role of science in nation building - Role of science post-independence - Best practices of
	technical writing - Application of technical writing in real-life scenarios.
IV	What is AI - Importance of AI - AI in Everyday Life - AI and the future of humanity

TEXT/REFERENCE BOOKS:

There are no prescribed textbooks.

COURSE PREREQUISITES:

1 Basic Knowledge of English, both verbal as well as written, upon completion of all units from Semesters 1 and 2.

COURSE OBJECTIVES:

1	Develop technical writing skills
2	Introduce students to Self-analysis techniques like SWOT & TOWS
3	Introduce students to key concepts of
	a. Pluralism & cultural spaces
	b. Cross-cultural communication

c. Science of Nation building	
-------------------------------	--

COURSE OUTCOMES:

NO	DESCRIPTION
C01	Apply & analyze the basic principles of SWOT & life positions.
CO2	Understand, analyze & leverage the power of motivation in real life.
CO3	Identify & respect pluralism in cultural spaces.
CO4	Understand and apply the concepts of Global, glocal and translocational.
C05	Analyze cross-cultural communication.
C06	Apply the science of Nation building.
C07	Identify the common mistakes made in cross-cultural communication.
C08	Understand, apply & analyze the tools of technical writing.
CO9	Recognize the roles and relations of different genders.
CO10	Understand Artificial intelligence & recognize its impact on daily life.
C011	Identify the best practices of technical writing.
CO12	Differentiate between the diverse cultures of India.

MAPPING OF COURSE OUTCOMES TO PROGRAMME OUTCOMES:

P01	P02	P03	РО	P05	P06	P07	P08	P09	P010	P011	P012
			4								

C01	1					2		1	2
CO2						2		1	2
CO3						1		1	2
CO4							1		3
C05	1					1	3	1	3
C06	1			1	1				3
C07	1						3		2
C08							3		
CO9						1			2
CO10					1				
C011	1						3		
C012	1				1	1	1	1	2

JUSTIFICATION:

СО	РО	JUSTIFICATION
C01	PO2	The SWOT analysis method is one of the most widely used strategic planning methods used by companies in the present day.
	P09	The SWOT analysis method is applicable at an individual or team level for analysing the team's trajectory.
	P011	Most project management meetings and analyses can be summarised to the areas focussed on by the SWOT analysis method.
	P012	Constant upgradation is required in a dynamic market.

	P09	Both extrinsic and intrinsic motivation is required in team building.
CO2	P011	Smooth running of a project requires all members to be motivated.
	P012	Understanding and utilising motivation is a lifelong process.
	P09	While focusing on a single goal, team members must be aware of how different their colleagues are and how they approach a goal.
CO3	P011	Managers should acknowledge and respect the different backgrounds and work processes of the team members.
	P012	Understanding the individuals we meet along our lifespan is an ongoing process.
C04	P010	Globalisation and glocalisation require learning and understanding of different cultures and how their communication makes them unique.
	P012	Globalism is connecting the planet in an ongoing process.
	PO2	Analysis and problem-solving go hand in hand when it comes to understanding cross-cultural communication.
	P09	Most of team building requires coming to terms with the differences in communication of people from different backgrounds.
C05	P010	The foundation for cross-cultural communication will always be the basics of communication.
	P011	Most of project management is effectively communicating the division or labour and handling the delegated tasks.
	P012	Learning the differences in communication across cultures is an ongoing process.
	PO2	Nation building requires an analysis of and determining solutions to the problems currently plaguing the country.
C06	P07	In the process of nation-building, one must be focused on the global goal of sustainability and negating the outcomes of climate change.
	P08	Without an ethical framework, the process of nation-building will simply lead to fascism.
	P012	Due to globalism and every country being part of the international economy, the process of nation-building is an ongoing process that requires constant updates

		and revival.
	PO2	Analysis and problem-solving go hand in hand when it comes to figuring out the common mistakes in cross-cultural communication.
C07	P010	The foundation for cross-cultural communication will always be the basics of communication.
	P012	Learning the mistakes in communication across cultures is an ongoing process.
C08	P010	Technical writing is currently the most viable and long-lasting form of communication when it comes to a professional setting as it eliminates most of the human errors and biases.
	P09	Eliminating gender biases leads to smoother teamwork.
C09	P012	Removing the gender biases and ideologies in place due to decades of social norms requires constant scrutiny.
CO10	P08	An ethical framework is required to maintain a robust machine-learning process that does not include unnecessary human ideology and biases.
C011	P02	In order to arrive at the best practices of technical writing, one must first eliminate the lesser practices through analysis and scrutiny.
	P010	Technical writing is currently the most viable and long-lasting form of communication when it comes to a professional setting.
	P02	Understanding the diversity of Indian sub-cultures requires an analysis of possible cultural clashes that need to be avoided before their onset.
	P08	One must not place one culture as superior to another lest it lead to the oppression of a minority community.
C012	P09	Handling a project with a pan-India crowd will require a team member to understand and empathise with their fellow teammates along with their varying backgrounds.
	P010	Most of the issues in India stem from the lack of communication across cultural barriers.
	P011	Handling a project with a pan-India crowd will require a project manager to understand and empathise with their fellow teammates along with their varying backgrounds.
	P012	Despite India's finite space and culture, the process of maintaining a pan-Indian

	sentiment will always require further investigation and growth.

TOPICS BEYOND SYLLABUS:

	TOPICS	PROPOSED ACTION
1	Limitation of AI	Lecture
2	Current trend of using AI as a marketing gimmick	Lecture/ Activity

WEB REFERENCES:

1	https://www.mindtools.com/amtbj63/swot-analysis
2	https://www.investopedia.com/terms/s/swot.asp
3	https://www.simplypsychology.org/maslow.html#:~:text=From%20the%20bottom% 20of%20the,can%20attend%20to%20higher%20needs.
4	https://www.knowledgehut.com/tutorials/project-management/motivation-theories
5	https://www.simplypsychology.org/self-determination-theory.html
6	https://www.youtube.com/watch?v=_juPDoa3GBY
7	https://smallbusiness.chron.com/different-approaches-organizational-development-towards-industrial-relations-81594.html
8	https://academic.oup.com/book/10138/chapter- abstract/157647867?redirectedFrom=fulltext
9	https://saksham.ugc.ac.in/
10	https://www.languagescientific.com/what-is-glocalism-and-how-does-it-affect-your- international-business/
11	https://en.wikipedia.org/wiki/Science_and_technology_in_India
12	https://www.skillsyouneed.com/write/report-writing.html
13	https://www.naukri.com/blog/how-to-write-a-job-application/amp/

14	https://www.wildapricot.com/articles/how-to-write-meeting-minutes
15	https://www.britannica.com/technology/artificial-intelligence

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

√CHALK & TALK	√STUD.	\sqrt{WEB} RESOURCES	ADD-ON COURSES
	ASSIGNMENT		
LCD/SMART	STUD. SEMINARS		
BOARDS			

ASSESSMENT METHODOLOGIES-DIRECT:

√ASSIGNMENTS	√STUD. SEMINARS	√TESTS/MODEL	√UNIV.
		EXAMS	EXAMINATION
STUD. LAB PRACTICES	STUD. VIVA	MINI/MAJOR PROJECTS	CERTIFICATIONS
ADD-ON COURSES	OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT:

$\sqrt{\text{ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)}}$	√STUDENT FEEDBACK ON FACULTY (TWICE)
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	OTHERS

Prepared by

Approved By

Vinay Menon

Dr. Anju C.

Course Plan

Day	Module	Торіс	Dates
1	1	Introduction to BCVS III	September 11

33

2	1	Introduction to BCVS III	Septen	nber 13
3	1	Self analysis September 14		nber 14
4	1	SWOT Analysis: Basic principles of SWOT	and Lif Septer	e Positions nber 18
5	1	SWOT Analysis: Apply SWOT in real-life scenarios	s Septei	mber 20
7	1	Motivation: Recognize how motivation helps real	l-life Se	ptember 21
6	1	Motivation: Leverage motivation in real-life scena	arios Se	eptember 25
8	1	Assignment I	Octobe	er 4
9	2	Identify pluralism in cultural spaces: Cultural Plu	ıralism	October 5
10	2	Identify pluralism in cultural spaces: India	Octobe	er 9
11	2	Identify pluralism in cultural spaces: Globalisatio	n Octol	per 11
12 tanslocationa	2 alism	Identify pluralism in cultural spaces: Glocalisatio	n and Octobe	er 12
13	2		Octobe	er 16
14	2		Octobe	er 18
15	4	Assignment II	Octobe	er 19
16	1	First Internal Exam	Octobe	er 25
17	2	First Internal Exam	Octobe	er 25
18	3	Role of science in nation building: National identi	ity	October 30
19	3	Role of science in nation building: Science and pr	ogress	November 1
20	3	Role of science post-independence November 2		
21	3 Best	practices of technical writing: Types of technical	writing	November 6
22	3 Арр	lication technical writing in real-life scenarios		November 8
23	3 Арр	lication technical writing in real-life scenarios		November 9
24	3	Application technical writing in real-life scenario)S	November 13
25	4	What is AI		November 15
26	4	What is AI		November 16

27	4	What is AI	November 20
28	4	Importance of AI	November 22
29	4	AI in Everyday Life	November 23
30	4	AI in Everyday Life	November 27
31	4	AI and the future of humanity	November 29
32	1	Revision	November 30
		Cross-cultural communication: Implications, common m application. Identify pluralism in cultural spaces: Roles of different genders	nistakes and and relations
33	3	Second Internal Exam	December 4
34	4	Second Internal Exam	December 4
35	1	Assignment II presentation	December 11
36	1	Assignment I presentation	December 13
37	1	Assignment I presentation	December 14
38	1	Revision	December 18
39	1	Revision	December 20
40	1	Revision	December 21

Assignment I: AI Tool for Students in 2030

Create an AI tool for students in 2030 based on your assessment of the technology available then. Present and submit the presentation for the tool.

Deadline: 13th December

Total marks: 7.5

CO mapping: CO10

Assignment II: Understanding the Underprivileged

Activity	Date of Submission
Initial Interview After selecting your subject, have a casual conversation with the individual to get a basic idea of their life, family background, job, personality, goals and aspirations Submission : 50-word report	Second week of semester
 SWOT Analysis Conduct a complete SWOT analysis, including a TOWS Matrix to better understand their trials and tribulations Submission: SWOT and TOWS matrix with expansion 	Before first internals
 Motivation Identify areas where the subject is motivated and areas where they lack motivation based on the SWOT analysis Submission: 100-word report on the motivation along with an explanation 	Before first internals
Globalisation Analyse their understanding of a global perspective of humanity Submission : List of sources or media used and the subject's interpretation of the same	Before first internals
Nation-building Considering their motivation and perspective on globalisation, analyse which aspect of nation-building needs to be improved for the subject Submission: 100-word report on the aspect along with an explanation	Before second internals
Conclusion Set long and short-term goals for the subject and collect their feedback Submission : 50-word report on the goals list and the subject's feedback	End of semester

Deadline: 13th December

Total marks: 7.5

CO mapping: CO1, CO2, CO3, CO4, CO6, CO11
101009/IT503F MACHINE LEARNING

Course Information Sheet

PROGRAMME: COMPUTER SCIENCE AND BUSINESS SYSTEMS	DEGREE: B. TECH
COURSE: MACHINE LEARNING	SEMESTER: FIVE CREDITS: 3
COURSE CODE: 101009/IT503F REGULATION: 2021	COURSE TYPE: ELECTIVE
COURSE AREA/DOMAIN: Data Science	CONTACT HOURS: 4 hours/week.
CORRESPONDING LAB COURSE CODE (IF ANY): 101009/IT522S	LAB COURSE NAME: Machine Learning Lab

SYLLABUS:

No	Topic	No. of Lectures
1	Module1: Introduction to Machine Learning (ML)	-
1.1	Introduction to Machine Learning (ML); Relationship between ML and	1
	human learning	
1.2	A quick survey of major models of how machines learn; Example applications of ML	1
1.3	Classification: Supervised Learning;	1
1.4	The problem of classification; Feature engineering; Training and testing classifier models;	1
1.5	Cross-validation; Model evaluation (precision, recall, F1-mesure, accuracy, area under curve);	2
1.6	St Statistical decision theory including discriminant functions and	1
	decision surfaces;	
2	Module 2: Classification	-
2.1	Naive Bayes classification; Bayesian networks	1
2.2	Decision Tree and Random Forests	2
2.3	k-Nearest neighbor classification	1
2.4	Support Vector Machines	1
2.5	Artificial neural networks including back propagation	2
2.6	Applications of classifications	1
2.7	Ensembles of classifiers including bagging and boosting	1
3	Module 3: Hidden Markov Models (HMM) & Regression	1
3.1	Hidden Markov Models (HMM) with forward-backward and Vierbi algorithms	1
3.2	Sequence classification using HMM	1
3.3	Conditional random fields	1
3.4	Applications of sequence classification such as part-of-speech tagging.	1
3.5	Regression: Multi-variable regression; Model evaluation	2
3.6	Least squares regression; Regularization	1
3.7	LASSO	1
3.8	Applications of regression	1
4	Module 4: Association rule mining & Outlier Detection.	
4.1	Association rule mining algorithms including apriori.	3
4.2	Expectation-Maximization (EM) algorithm for unsupervised learning	2

4.3	Anomaly and outlier detection methods	2
5	Module 5: Clustering	
5.1	Clustering	1
5.2	Average linkage	1
5.3	Ward's algorithm	1
5.4	Minimum spanning tree clustering	1
5.5	K-nearest neighbors clustering	1
5.6	BIRCH	2
5.7	CURE	1
5.8	DBSCAN	2

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T	Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
Т	Ethem Alpaydın, Introduction to Machine Learning (Adaptive Computation and Machine Learning), MIT Press, 2004.
R	R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2/e, Wiley, 2001.
R	C. Bishop, Pattern Recognition and Machine Learning, Springer, 2007.
R	E. Alpaydin, Introduction to Machine Learning, 3/e, Prentice-Hall, 2014.
R	Rostamizadeh, A. Talwalkar, M. Mohri, Foundations of Machine Learning, MIT Press.
R	Andrew R Webb, Keith D Kopsey, Statistical Pattern Recognition, 3/e, Wiley, 2011.

COURSE PRE-REQUISITES:

NIL

COURSE OUTCOMES:

СО	Course Outcome (CO)	Bloom's Category Level
No.		
CO 1	Understand the basics of machine learning and identify the major models and applications of machine learning.	Level 2: Understand
CO 2	Differentiate various learning approaches, and to interpret the concepts of Supervised learning.	Level 2: Understand
CO 3	Identify the state sequence and evaluate a sequence emission probability from a given HMM.	Level 3: Apply
CO 4	Make use of the concept of association rule mining in real world scenario.	Level 3: Apply
CO 5	Illustrate and apply clustering algorithms and identify its applicability in real life problems.	Level 3: Apply

Mapping of Course Outcomes with Program Outcomes

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	1	2	-	-	-	-	-	-	-	-	3
C02	3	1	2	-	-	-	-	-	-	-	-	3
CO3	3	3	3	-	-	-	-	-	-	-	-	3
C04	3	2	3	3	-	-	-	-	-	-	-	3
C05	3	3	3	3	3	-	-	-	-	-	-	3

3/2/1: high/medium/low

JUSTIFICATION FOR CO-PO CORRELATION:

MAPPING	LEVEL	JUSTIFICATION
C01-P01	3	Study the concept of machine learning and its applications involves solving complex engineering problems
CO1-PO2	1	Principles of mathematics and engineering sciences are used in understanding various machine learning functionalities
CO1-PO3	2	Using the knowledge of various data mining functionalities, we can design and develop solutions for complex engineering problems
CO1- PO12	3	The knowledge of machine learning is a life-long learning in the broadest context of technological change.
CO2-PO1	3	Study of various supervised learning techniques to improve the quality of data involves solving complex engineering problems
CO2- PO2	1	Principles of mathematics and engineering sciences are used in understanding various supervised learning functionalities
СО2- РОЗ	2	Using the knowledge of various supervised learning methods, we can design and develop solutions for complex engineering problems
CO2- PO12	3	Supervised learning is a life-long learning in the broadest context of technological change.
CO3- PO1	3	The study of state sequence and emission probability of HMM involves solving complex engineering problems
CO3- PO2	3	The study of state sequence and emission probability of HMM is used to learn engineering sciences.
СОЗ- РОЗ	3	Knowledge of state sequence and emission probability can be used to design and develop solutions for complex engineering problems

CO3- PO12	3	The study of state sequence and emission probability is a life- long learning in the broadest context of technological change.
CO4- PO1	3	The association rule mining methods study involves solving complex engineering problems
CO4- PO2	2	Principles of mathematics and engineering sciences are used to learn the concept of association rule mining methods.
CO4- PO3	3	Knowledge of various association rule mining methods can be used to design and develop solutions for complex engineering problems
CO4- PO4	3	Use research-based knowledge and research methods for various association rule mining.
CO4- PO12	3	Association rule mining is a life-long learning in the broadest context of technological change.
CO5- PO1	3	The study of unsupervised learning techniques involves solving complex engineering problems
CO5- PO2	3	The study of the algorithm used for data clustering involves principles of mathematics and engineering
CO5- PO3	3	The study of unsupervised learning techniques and the algorithm used for data clustering can be used to design and develop solutions for complex engineering problems
C05- P04	3	The knowledge of clustering algorithms can be used to design and conduct experiments to provide valid conclusions
CO5- PO5	3	The knowledge of clustering algorithms can be used to modeling to complex engineering activities with an understanding of the limitations.
CO5- PO12	3	The knowledge of clustering algorithms is a life-long learning in the broadest context of technological change.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED ACTIONS	PO MAPPING
1	FP Growth Algorithm - https://www.geeksforgeeks.or g/frequent-pattern-growth- algorithm/	Seminar	1, 2, 3, 4, 5, 6

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURE/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl	DESCRIPTION	PO MAPPING
No:		

1	CNN- https://www.kaggle.com/code/kanncaa1/convolutional-	1, 2, 3, 4, 5, 6
	neural-network-cnn-tutorial	

WEB SOURCE REFERENCES:

	1.	https://www.javatpoint.com/pytorch-convolutional-neural-network			
	2.	https:// <u>www.guru99.com/data-mining-tutorial.html</u>			
	3.	https:// <u>www.tutorialandexample.com/data-mining-tutorial/</u>			
	4.	https://nptel.ac.in/courses/106106179 (NPTEL)			
D	DELIVERY/INSTRUCTIONAL METHODOLOGIES:				

🗹 CHALK & TALK	🗹 STUD. ASSIGNMENT	☑WEB RESOURCES
☑ LCD/SMART BOARDS	□ STUD. SEMINARS	☑ADD-ON COURSES

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	☑ STUD.	☑ TESTS/MODEL	☑ UNIV.
	SEMINARS	EXAMS	EXAMINATION
STUD. LAB	□ STUD. VIVA	□ MINI/MAJOR	☑
PRACTICES		PROJECTS	CERTIFICATIONS
□ ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES(BY	☑ STUDENT FEEDBACK ON
FEEDBACK, ONCE)	FACULTY (TWICE)

Prepared by Ms. Ancy C A (Faculty in charge)

Approved by Dr. Neeba E. A. (HOD)

Course Plan

No	Торіс		
1	Module1: Introduction to Machine Learning (ML)		
1.1	Introduction to Machine Learning (ML); Relationship between ML and human learning	1	
1.2	A quick survey of major models of how machines learn; Example applications of ML	1	
1.3	Classification: Supervised Learning;	1	
1. 4	The problem of classification; Feature engineering; Training and testing classifier models;	1	
1.5	Cross-validation; Model evaluation (precision, recall, F1-mesure, accuracy, area under curve);	2	
1.6	Statistical decision theory including discriminant functions and decision surfaces;		
2	Module 2: Classification		
2.1	Naive Bayes classification; Bayesian networks	1	
2.2	Decision Tree and Random Forests	2	
2.3	k-Nearest neighbor classification	1	
2.4	Support Vector Machines	1	
2.5	Artificial neural networks including back propagation	2	
2.6	Applications of classifications	1	
2.7	Ensembles of classifiers including bagging and boosting	1	
3	Module 3: : Hidden Markov Models (HMM) & Regression		
3.1	Hidden Markov Models (HMM) with forward-backward and Vierbi algorithms	1	
3.2	Sequence classification using HMM	1	

3.3	Conditional random fields	1
3.4	Applications of sequence classification such as part-of-speech tagging.	1
3.5	Regression: Multi-variable regression; Model evaluation	2
3.6	Least squares regression; Regularization	1
3.7	LASSO	1
3.8	Applications of regression	1
4	Module 4: Association rule mining & Outlier Detection.	
4.1	Association rule mining algorithms including apriori.	3
4.2	Expectation-Maximization (EM) algorithm for unsupervised learning	2
4.3	Anomaly and outlier detection methods	2
5	Module 5 : Clustering	
5.1	Clustering	1
5.2	average linkage	1
5.3	Ward's algorithm	1
5.4	Minimum spanning tree clustering	1
5.5	K-nearest neighbors clustering	1
5.6	BIRCH	2
5.7	CURE	1
5.8	DBSCAN	2

Tutorial Questions

1. Consider the confusion matrix given below for a binary classifier predicting the presence of a disease. Calculate any seven classifier performance evaluation metrices with suitable equations.

	Predicted	Predicte
	No	d Yes
Actual	45	5
No		

Actual	5	95
Yes		

2. Suppose we have 10 samples in the dataset. Classify whether the student {Name=Niya, Age=44, Gender=F} like Music or Dance using KNN, where k=3?

Name	Age	Gender	Art
Anil	32	М	Music
Maya	40	F	Dance
Sara	16	F	Dance
Zei	34	Μ	Neither
Sachin	55	Μ	Music
Neha	40	F	Neither
Rahul	20	Μ	Dance

3. The following table contains training examples that help predict whether a patient is likely to have

а	heart atta	ck.		-		
	Patient	Chest	Male?	Smoke	Exercises	Heart
	id	pain?		s?	?	attack?
	1.	yes	yes	no	yes	yes
	2.	yes	yes	yes	no	yes
	3.	no	no	yes	no	yes
	4.	no	yes	no	yes	no
	5.	yes	no	yes	yes	yes
	6.	no	yes	yes	yes	no

Use information gain to construct a minimal decision tree that predicts whether or not a patient is

likely to have a heart attack.

4. Consider the following neural network with weights w for the edges and offset b for the nodes. Consider input values X1 = 1 and X2 =1. Find Y3, Y4, Y5 for the forward propagation.

5. Consider the following hypothetical data concerning student characteristics. Use Naive Bayes classifier to determine whether or not someone with poor GPA, and lots of effort should be hired or not.

Name	GPA	Effort	Hirable
Sarah	Poor	Lots	Yes

Dona	Average	Some	No
Alex	Average	Some	No
Annie	Average	Lots	Yes
Emily	Excellent	Lots	Yes
Pete	Excellent	Lots	No
John	Excellent	Lots	No
Kathy	Poor	Some	No

6. Consider the following transactional data. Generate association rules using the Apriori algorithm

from the given data with support threshold S = 33% and confidence threshold C = 60%. Show the candidate and frequent itemsets for each database scan. Enumerate all the final frequent itemsets. Also indicate the association rules that are generated and highlight the strong ones, sort them by confidence.

Transaction ID	Item Purchased
T1	P, Q, R
T2	P, Q
T3	P, S, T
T4	S, T
T5	R, T
Т6	P, S, T

Assignment Questions

- 1. Write short note on the following topics.
 - 1. The problems of classification.
 - 2. Applications of classifications.
- 2. Write a short note on the following topics.1. Applications of sequence classification such as part-of-speech tagging2. Applications of regression

101009/IT522 G COMPILER DESIGN LAB (LEX & YACC)

COURSE INFORMATION SHEET

PROGRAMME: COMPUTER SCIENCE & BUSINESS	DEGREE: BTECH	
SYSTEM		
COURSE: COMPILER DESIGN LAB	SEMESTER: V CREDITS: 2	
COURSE CODE: 101009/IT522 G	COURSE TYPE: CORE - Lab	
REGULATION: 2021		
COURSE AREA/DOMAIN: Programming, Data	CONTACT HOURS: 3 hours per week	
Structures and Algorithms		

Syllabus

1. Design and implement a lexical analyzer for given language using C and the lexical analyzer should ignore redundant spaces, tabs and new lines.

- 2. Implementation of Lexical Analyzer using Lex Tool
- 3. Generate YACC specification for a few syntactic categories.
- a) Program to recognize a valid arithmetic expression that uses operator +, -, *and /.

b) Program to recognize a valid variable which starts with a letter followed by any number of letters or digits.

- c) Implementation of Calculator using LEX and YACC
- d) Convert the BNF rules into YACC form and write code to generate abstract syntax tree
- 4. Write a program to find ε closure of all states of any given NFA with ε transition.
- 5. Write a program to convert NFA with ε transition to NFA without ε transition.
- 6. Write a program to convert NFA to DFA
- 7. Write a program to minimize any given DFA.
- 8. Develop an operator precedence parser for a given language.

- 9. Write a program to find Simulate First and Follow of any given grammar.
- 10. Construct a recursive descent parser for an expression.
- 11. Construct a Shift Reduce Parser for a given language.
- 12. Write a program to perform loop unrolling.
- 13. Write a program to perform constant propagation.
- 14. Implement Intermediate code generation for simple expressions.

15. Implement the back end of the compiler which takes the three-address code and produces the 8086 assembly language instructions that can be assembled and run using an 8086 assembler. The target assembly instructions can be simple move, add, sub, jump etc.

Lab cycle

- 1. Design and implement a lexical analyzer for given language using C and the lexical analyzer should ignore redundant spaces, tabs and new lines.
- 2. Implementation of Lexical Analyzer using Lex Tool
- 3. Implementation of Lexical Analyzer using Lex Tool toignore redundant spaces, tabs and new lines.
- 4. Generate YACC specification for a few syntactic categories.
 - a) Program to recognize a valid arithmetic expression that uses operator +, –, * and /.

b) Program to recognize a valid variable which starts with a letter followed by any number of letters or digits.

- c) Implementation of Calculator using LEX and YACC
- 5. Write a program to convert NFA to DFA
- 6. Write a program to find Simulate First and Follow of any given grammar.
- 7. Design and implement a recursive descent parser for a given grammar.
- 8. Construct a Shift Reduce Parser for a given language.
- 9. Implement Intermediate code generation for simple expressions
- 10. Write a C program to recognize strings under 'a', 'a*b+', 'abb'.

11. Write a C program to simulate lexical analyzer for validating operators

12. Convert the BNF rules into YACC form and write code to generate abstract syntax tree

13. Implement the back end of the compiler which takes the three address code and produces the 8086 assembly language instructions. The target assembly instructions can be simple move, add, sub, jump etc.

14. Write a program to minimize any given DFA.

15. Write a program to find ϵ – closure of all states of any given NFA with ϵ transition.

Text Books

1. V. Aho, R. Sethi and J. Ullman, Compilers: Principles, Techniques and Tools, 2nd Edition, Addison Wesley, 2006.

2. Levine R. John, Tony Mason and Doug Brown, Lex & Yacc, 2nd Edition, O'Reilly Media, Inc., 1992.

Reference Books

1. Bjarne Stroustrup, The Design and Evolution of C++, 1st Edition, Addison-Wesley Professional, 1994.

2. Kenneth C. Louden, Compiler Construction – Principles and Practice, Cengage Learning Indian Edition, 2006.

3. Tremblay and Sorenson, The Theory and Practice of Compiler Writing, Tata McGraw Hill & Company,1984.

4. Randy Allen, Ken Kennedy, Optimizing Compilers for Modern Architectures: A Dependence-based Approach, Morgan Kaufmann Publishers, 2008.

5. Steven S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann Publishers – Elsevier Science, India, Indian Reprint 2008.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
101009/IT100C	Fundamentals of Computer Science	The basics of C programming	S1
101009/IT200C	DATA STRUCTURES &	Basics of Data Structures	S2

ALGORITHMS	

COURSE OBJECTIVES:

This course is intended to provide a hands-on experience on implementing the different
 phases of compiler, implementing and testing simple optimization techniques and to give exposure to compiler writing tools.

Course Outcomes

After the completion of the course the student will be able to

CO1: Implement the techniques of Lexical Analysis and Syntax Analysis.

CO2: Apply the knowledge of Lex & Yacc tools to develop programs.

CO3: Generate intermediate code.

CO4: Implement Optimization techniques and generate machine level code.

CO5: Understand and analyze the role of syntax and semantics of programming languages in compiler construction

	P01	PO2	PO3	P04	PO5	PO6	P07	P08	P09	P010	P011	P012
C01	3	2	2	2	2	-	21	-	1	1	1	1
CO2	3	2	3	2	2	-	÷	-	2	1	1	1
<mark>C03</mark>	3	2	3	2	2	-	-	-	1		-	2
C04	3	2	3	2	2	-	-	-	-	-	-	- 1
CO5	3	2	3	2	2	-	-	-	1	1	1	2

Mapping of Course Outcomes with Program Outcomes

1-Low(L) 2-Medium(M) 3-High(H)

JUSTIFICATIONS FOR THE MAPPING

MAPPING	LOW/MEDIUM/HIGH	JUSTIFICATION
C01-P01	Н	Students will acquire knowledge about phases of compilation
C01-P03	L	Students will be able to understand the role of Lexical Analyzer in Compilation Process
C01-P012	Н	Information acquired from the compilation phases provides lifelong learning in the context of Compiler Construction.
CO1-PSO2	М	Having the knowledge about the compiler construction tools helps in the study and design of compiler.
C02-P02	Н	Knowledge of Ambiguities in the context free Grammar helps students in problem analysis.
C02-P03	М	Students gain the ability to design syntax analyzer tool used for compilation process.
C02-P04	Н	Studies about the various parsing techniques helps the students to understand about Parsing Process.
C02-P012	Н	Students will be able to analyze different parsing techniques used for Compilation
C03-P02	Н	Studies about the type checking process helps in the semantic analysis phase of compilation.
С03-Р03	Н	Understanding the various storage al location strategies helps in organization of information in the Run Time Environment of Compilation.
C03-P012	L	Information acquired from bottom up and top down evaluation provides lifelong learning in the compilation
CO3-PSO3	Н	Students could apply the knowledge of Overloaded and Polymorphic function used in semantic Analysis Phase of Compiler.

CO4-PO1	Н	Students gain the ability to learn about the Intermediate code generation in compilation process.
CO4-PO2	Н	Students will understand the need of intermediate representation for the generation of target code .
CO4-PO12	М	The students could understand and implement different types Intermediate Representation of code used for generating target code.
CO4-PSO2	М	Information acquired from the fundamentals of intermediate representation leads to implementation of target code
C05-P01	Н	Students will be obtain basic knowledge of code optimization
C05-P02	Н	Information acquired from the sources of optimization helps in implementation of target code
C05-P012	М	Students could apply the knowledge of code optimization in Compiler Construction
CO5-PSO2	М	Students will be acquiring knowledge about code improving transformation.
C06-P01	Н	Students will be acquiring knowledge about Instruction Scheduling
C06-P04	М	Students will be acquiring knowledge about Register Allocation
CO6-PO12	Н	Students will be acquiring knowledge about Instruction Level Optimization
CO6-PSO3	М	Students will be acquiring knowledge about Design issues in Code Generation for a Target Processor

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

S1	DESCRIPTION	PO MAPPING	
no			
1	Design of Interpreter	a,b,d,e	
2	Design of Optimized Compiler	a,b,d,e	

WEB SOURCE REFERENCES:

1	https://www.cs.utexas.edu/~novak/lexpaper.htm
2	https://compilers.iecc.com/crenshaw/

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

✓ CHALK & TALK		✓ HOME ASSIGNMENT		✓ WEB RESOURCES		
LCD/SMART BOARDS		STUD. SEMINARS		ADD-ON COURSES		
ASSESSMENT METHOD	OLOGIES	-DIRECT				
ASSIGNMENTS	S	STUD. SEMINARS	✓ TESTS/MO EXAMS	DEL	✓ UNIV. EXAMINATION	
✓ STUD. LAB PRACTICES	√ S	STUD. VIVA	□ MINI/MAJOI PROJECTS	R	□ CERTIFICATIONS	
ADD-ON COURSES	(OTHERS				

ASSESSMENT METHODOLOGIES-INDIRECT

✓ ASSESSMENT OF COURSE OUTCOMES (BY	✓ STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE)	(ONCE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS	□ OTHERS
BY EXT. EXPERTS	

Prepared by

Approved by

Tinku Soman Jacob

HOD

Open questions

- 1. Write a C program for implementing the functionalities of predictive parser for the mini language specified.
- 2. Write a program to perform loop unrolling.

- 3. Write a program to perform constant propagation.
- 4. Simulation of DFA
- 5. Implementation of symbol table
- 6. Construction of LR parsing table
- 7. Write program to identify string constant or not
- 8. Syntax checking for for loop

Advanced Questions

- 1. Implement the lexical analyzer using JLex, flex or other lexical analyzer generating tools.
- 2. Write a C program for constructing of LL (1) parsing.
- 3. Write a C program to implement LALR parsing.
- 4. Construction of minimized dfa from a given regular expression
- 5. Implement lexical analyser using finite automata

Course Plan

Sl No	Experiment	Schedule
1	Lexical analyzer using C	Week 1
2	LEX programs(keyword-iden, uppr-case word, vowels, count)	Week 2
3	Yacc program(calculator)	Week 3
4	Yacc program(expression validation, identifier validation)	Week 4
5	LEX program(eliminate WS & comments, lexical analyzer)	Week 5
6	NFA to DFA conversion	Week 6
7	FIRST & FOLLOW	Week 7
8	Recognize strings	Week 8
9	RD parser	Week 9
10	Shift reduce parser	Week 10
11	Intermediate code generator	Week 11
12	Code generation	Week 12

101009/IT522S MACHINE LEARNING LAB

Course Information Sheet

SYLLABUS:

SI.	LIST OF EXPERIMENTS	HOURS
NO.		
1	 Explore WEKA Machine Learning Toolkit Experiment No.1: Downloading and/or installation of WEKA data mining toolkit, Understand the features of WEKA toolkit such as Explorer, Knowledge Flow interface, Experimenter, command-line interface. Navigate the options available in the WEKA (ex. Select attributes panel, Preprocess panel, Classify panel, Cluster panel, Associate panel and Visualize panel) 	
2	 Experiment No.2: Study the arff file format Explore the available data sets in WEKA Load a dataset (breast cancer)and observe the following: a. List the attribute names and their types b. Number of records in each dataset c. Identify the class attribute (if any) d. Perform necessary pre-processing (minimum 3) e. Plot Histogram 	3
3	Explore Graphical Plots in R. Experiment No.3: Create a Scatter plot with the iris dataset using the ggplot package. Add legends, lines, and labels, and use the aes function in the plot.	3
4	Experiment No.4: Create a histogram with the titanic dataset using the ggplot package. Add legends, lines, and labels, and use the aes function in the plot. Classification	
5	Experiment No.5: Demonstrate pre-processing in soyabean dataset using R, with minimum of four preprocessing to be done, and prepare it for classification	3
6	 Experiment No.6: Demonstrate the following Classification algorithms using some public domain datasets in UCI ML repository and compute the accuracy of the classifier, considering few test datasets. i. Naive Bayes classification ii. Decision Tree iii. Random Forests iv. Ensembles of classifiers including bagging and bagsting. 	12
7	Experiment 7: Demonstrate the following Classification algorithms using some public domain datasets in UCI ML repository and compute the accuracy of the	6

	classifier, considering few test datasets.	
	i. k-Nearest neighbor classification	
	ii. Support Vector Machines	
8	Micro Project:	9
	1. Implementation of clustering algorithms	
	2. Implementation of association rule mining algorithm (Apriori)	
	3. Implementation of anomaly detection algorithms	
	4. Implementation of EM algorithm for some specific problem	
	Theory (to be written in the record).	
	1. Details on the techniques used.	
	2. The domain selected.	
	3. Aim of the project.	
	4. Motivation behind the project.	
	5. Reason to choose the technique.	
	6. Pre-processing steps used.	
	7. Performance measures used, and accuracy obtained.	
	8. Inference from the implementation.	
	Output should include:	
	1. Code (Print)	
	2. Sample outputs of pre-processing, analysis and prediction.	
	3. Sample of performance evaluation.	
	4. Graphs, if any.	

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
Т	1. Christopher M. Bishop, <i>Pattern Recognition and Machine Learning</i> , Springer, 2006. 2. Ethem Alpaydın, Introduction to Machine Learning (Adaptive Computation and Machine Learning), MIT Press, 2004.
R	 R.O. Duda, P.E. Hart, D.G. Stork, <i>Pattern Classification</i>, 2/e, Wiley, 2001. C. Bishop, Pattern Recognition and Machine Learning, Springer, 2007. E. Alpaydin, <i>Introduction to Machine Learning</i>, 3/e, Prentice-Hall, 2014. Rostamizadeh, A. Talwalkar, M. Mohri, <i>Foundations of Machine Learning</i>, MIT Press. Andrew R Webb, Keith D Kopsey, Statistical Pattern Recognition, 3/e, Wiley, 2011.

COURSE PRE-REQUISITES:

Nil

COURSE OUTCOMES: After the completion of the course the student will be able to:

CO1: Familiarize the usage of Machine Learning tools such as WEKA and R.

CO2: Implement and apply machine learning algorithms to analyze the complex problems.

CO3: Select and apply appropriate algorithms for solving a of real-world problems.

CO4: Understand the associations in data and infer knowledge for future predictions.

CO-PO AND CO-PSO MAPPING

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	1	2	2	2	3	1	-	-	-	-	-	1
CO2	2	2	2	3	3	1	-	-	-	-	-	1
CO3	3	2	2	3	3	1	-	-	-	-	-	1
CO4	2	3	3	2	3	1	-	-	-	-	-	1

JUSTIFICATIONS FOR CO-PO/PSO MAPPING

MAPPING	LOW/MEDIUM/HIGH	JUSTIFICATION
C01-P01	LOW	The knowledge of data mining tools will help the
		students to formulate solutions for engineering
		problems.
CO1-PO2	MEDIUM	The knowledge of data mining tools will help the
		students to apply the same to identify and analyze
		engineering problems.
CO1-PO3	MEDIUM	Understanding the data preprocessing techniques
		and tools will help the students to apply the same in
		designing system components or processes
		satisfying specific needs and constraints.
C01-P04	MEDIUM	Understanding the data preprocessing techniques
		and tools will help the students to apply the same in
		investigating complex problems.
C01-P05	HIGH	Understanding data mining tools help the students
		to create, select, and apply appropriate techniques
		to model complex engineering activities.
C01-P06	LOW	The knowledge of data preprocessing help students
		to apply reasoning informed by the contextual

		knowledge.
C01-P012	LOW	The knowing of data mining is a life-long learning in
		the broadest context of technological change.
CO2-PO1	MEDIUM	The knowledge of various machine learning
		algorithms will help the students to formulate
		solutions for engineering problems.
CO2-PO2	MEDIUM	The knowledge of various machine learning
		algorithms will help the students to apply the same
		to identify and analyze engineering problems.
C02-P03	MEDIUM	Understanding the data machine learning
		techniques and tools will help the students to apply
		the same in designing system components or
		processes satisfying specific needs and constraints.
C02-P04	MEDIUM	Understanding the data classification techniques
		and tools will help the students to apply the same
		in investigating complex problems.
C02-P05	HIGH	Understanding various machine learning algorithms
		help the students to create, select, and apply
		appropriate techniques to model complex
		engineering activities.
C02-P06	LOW	The knowledge of machine learning algorithms help
		students to apply reasoning informed by the
		contextual knowledge.
C02-P012	LOW	The knowing of machine learning is a life-long
		learning in the broadest context of technological
		change.
C03-P01	HIGH	The use of appropriate ML algorithms in realistic
		data will help the students to formulate solutionsfor
		engineering problems.
C03-P02	MEDIUM	The use of appropriate ML algorithms in realistic
		data will help the students to apply the same to
		identify and analyze engineering problems.
C03-P03	MEDIUM	The use of appropriate ML algorithms on realistic
		data will help the students to apply the same in
		designing system components or processes
		satisfying specific needs and constraints.
C03-P04	MEDIUM	The use of appropriate ML algorithms on realistic
		data will help the students to apply the same in
		investigating complex problems.
CO3-PO5	HIGH	The use of appropriate ML algorithms help the
		students to create, select, and apply appropriate
		techniques to model complex engineering activities.
C03-P06	LOW	The use of appropriate ML algorithms help students
	_	to apply reasoning informed by the contextual
		knowledge.
C03-P012	LOW	The use of appropriate ML algorithms is a life-long

		learning in the broadest context of technological change.	
CO4-PO1	MEDIUM	The knowledge of pattern designs and association rule mining will help the students to formulate solutions for engineering problems.	
CO4-PO2	HIGH	The knowledge of various association rule mining algorithms will help the students to apply the same to identify and analyze engineering problems.	
CO4-PO3	HIGH	Understanding the association rule mining techniques and tools will help the students to apply the same in designing system components or processes satisfying specific needs and constraints.	
C05-P04	MEDIUM	Understanding the association rule mining techniques and tools will help the students to apply the same in investigating complex problems.	
CO6-PO5	HIGH	Understanding the association rule mining techniques help the students to create, select, and apply appropriate techniques to model complex engineering activities.	
CO6-PO6	LOW	Understanding the association rule mining techniques help students to apply reasoning informed by the contextual knowledge.	
C06-P012	LOW	Understanding the association rule mining techniques is a life-long learning in the broadest context of technological change.	

GAPS IN THE SYLLABUS - TO MEET INDUSTRY REQUIREMENTS:

Sl. No.	DESCRIPTION	PROPOSED ACTIONS
1.	Implementation of ANN	Video Lectures

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

1.	Implementation of HMM and EM Algorithm.

WEB SOURCE REFERENCES:

1	https://www.youtube.com/watch?v=m7kpIBGEdkI
2	https://www.youtube.com/watch?v=12eWvSvOqF4
3	https://www <u>.educba.com/weka-data-mining/</u>
4	https://www.javatpoint.com/weka-data-mining

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	WEB RESOURCES	
LCD/SMART BOARDS		

ASSESSMENT METHODOLOGIES-DIRECT:

STUD. LAB PRACTICES	ASSIGNMENTS	UNIV. EXAMINATION	STUD. VIVA
MICRO PROJECTS			

ASSESSMENT METHODOLOGIES-INDIRECT:

✓ ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	✓ STUDENT FEEDBACK ON FACULTY (TWICE)

Prepared by Ms. Ancy C A (Faculty in charge) Approved by Dr. Neeba E. A. (HOD)

Lab Cycle

Explore WEKA Machine Learning Toolkit

Experiment No.1:

• Downloading and/or installation of WEKA data mining toolkit,

• Understand the features of WEKA toolkit such as Explorer, Knowledge Flow interface, Experimenter, command-line interface.

• Navigate the options available in the WEKA (ex. Select attributes panel, Preprocess panel, Classify panel, Cluster panel, Associate panel and Visualize panel)

Experiment No.2:

- Study the arff file format
- Explore the available data sets in WEKA
- Load a dataset (breast cancer) and observe the following:
- a. List the attribute names and their types
- b. Number of records in each dataset
- c. Identify the class attribute (if any)
- d. Perform necessary pre-processing (minimum 3)
- d. Plot Histogram

Explore Graphical Plots in R.

Experiment No.3: Create a Scatter plot with the iris dataset using the ggplot package. Add legends, lines, and labels, and use the aes function in the plot.

Experiment No.4: Create a histogram with the titanic dataset using the ggplot package. Add legends, lines, and labels, and use the aes function in the plot.

Classification

Experiment No.5: Demonstrate pre-processing in soyabean dataset using R, with minimum of four preprocessing to be done, and prepare it for classification.

Experiment No.6: Demonstrate the following Classification algorithms using some public domain datasets in UCI ML repository and compute the accuracy of the classifier, considering few test datasets.

- i. Naive Bayes classification
- ii. Decision Tree
- iii. Random Forests

iv. Ensembles of classifiers including bagging and boosting

Experiment 6: Demonstrate the following Classification algorithms using some public domain datasets in UCI ML repository and compute the accuracy of the classifier, considering few test datasets.

- i. k-Nearest neighbor classification
- ii. Support Vector Machines

Micro Project:

- 1. Implementation of clustering algorithms
- 2. Implementation of association rule mining algorithm (Apriori)
- 3. Implementation of anomaly detection algorithms
- 4. Implementation of EM algorithm for some specific problem

Theory (to be written in the record).

- 1. Details on the techniques used.
- 2. The domain selected.
- 3. Aim of the project.
- 4. Motivation behind the project.
- 5. Reason to choose the technique.
- 6. Pre-processing steps used.
- 7. Performance measures used, and accuracy obtained.
- 8. Inference from the implementation.

Output should include:

- 1. Code (Print)
- 2. Sample outputs of pre-processing, analysis and prediction.
 - 3. Sample of performance evaluation.
 - 4. Graphs, if any.

Open Experiments

1. Data Preprocessing

i. Separate the nominal attributes and the real valued attributes from a given dataset by using the Weka tool.

ii. Demonstrate the preprocessing of a given arff file using Weka.

2. Classification

Write R program to implement a Naïve bayes classifier and compare its performance with decision tree classifier.

3. Regression:

Write R program to demonstrate linear regression on a sample dataset

4. Association Rule Mining

Write R programs to:

i. Implement Apriori algorithm and generate association rules for the given dataset. ii. Using FP-Growth algorithm, generate association rules for the given dataset

5. Clustering

Write R programs to: i. Perform K-means clustering on a given dataset.

Advanced Questions

- 1. Implement Single Linear and Muti Variable Regression.
- 2. Implement Polynomial Regression. Evaluate accuracy obtained using different methods.
- 3. Perform Regularization using LASSO model using given dataset.
- 4. Perform Regularization using RIDGE model using given dataset.
- 5. Implement DBSCAN clustering on sample dataset.
- 6. Perform dimensionality reduction using PCA.
- 7. Perform image compression using PCA.
- 8. Implement kernel function in SVM using polynomial, gaussian and sigmoid kernel.
- 9. Implement ANN.
- 10. Implement Gradient Boosting Classifier for given data with interpretation.
- 11. Implement agglomerative clustering on a sample dataset.
- 12. Implement divisive clustering on a sample dataset.

Course Plan

No	Exporimonts	No. of Lab
NU	Experiments	hours
1	Experiment No.1: Explore WEKA Machine Learning Toolkit	3 Hours
2	Experiment No.2: Study the arff file format and explore the available datasets in WEKA	3 Hours
3	Experiment No.3: Implementation of various plots R	3 Hours
4	Experiment No.4: Data manipulation with R, Pre-processing and preparing a dataset for Classification.	3 Hours
5	Experiment No.5: Implementation of Naïve Bayes Classification algorithm using some public domain datasets in UCI ML repository.	3 Hours
6	Experiment No.6: Implementation of Decision Tree and Random Forest Classification algorithm using some public domain datasets in UCI ML repository.	3 Hours
7	Experiment No.7: Implementation of ensemble classification algorithm using some public domain datasets in UCI ML repository.	3 Hours
8	Experiment No.8: Implementation of k-Nearest neighbor classification algorithm using some public domain datasets in UCI ML repository.	3 Hours
9	Experiment No. 9: Implementation of Support Vector Machine Classification algorithm using some public domain datasets in UCI ML repository.	3 Hours
10	Experiment No.10: Implementation of KNN	3 Hours
11	Experiment No.11: Implementation of ANN	3 Hours
12	Experiment No.12: Microproject	9 Hours

101009/IT522T MINI PROJECT

COURSE INFORMATION SHEET

Mini Project

PROGRAMME:COMPUTER SCIENCE AND	DEGREE: B. TECH
BUSINESS SYSTEMS	
COURSE: Mini Project	SEMESTER: V CREDITS: 1
COURSE CODE: 101009/IT522T	COURSE TYPE: PSW
REGULATION: 2020	
COURSE AREA/DOMAIN: Engineering	CONTACT HOURS: 3(Practical)hours/Week.
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: NA
ANY): NA	

SYLLABUS:

PHASE	DETAILS	HOURS
COURSE PLAN	In this course, each group consisting of three/four members is	39
	expected to design and developa moderately complex	(13
	software/hardware system with practical applications. This	WEEKS)
	should be aworking model. The basic concept of product design	
	may be taken into consideration.	
	Students should identify a topic of interest in consultation with Faculty-in-charge of mini project/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout thedesign/fabrication or develop codes/programs to achieve the objectives. Demonstrate theINFORMATION TECHNOLOGYnovelty of the project through the results and outputs. The progress of the mini project isevaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report isrequired at the end of the semester. The product has to be demonstrated for its full designspecifications. Innovative design concepts, reliability considerations, aesthetics/ergonomicaspects taken care of in the project shall be given due weight.	

COURSE OBJECTIVES:

This course is designed for enabling the students to apply the knowledge to address the real-world situations/problems and find solutions. The course is also intended to estimate the ability of the students in transforming theoretical knowledge studied as part of the curriculum so far into a working model of a software system. The students are expected to design and develop a software/hardware project to innovatively solve a real-world problem.

COURSE OUTCOMES:

After completion of the course the student will be able to

Si.NO	DESCRIPTION	Blooms'
		Taxonomy
		Level
CO1	Make use of acquired knowledge within the selected area of	Level 3:
	technology for project development.	Apply
CO2	Identify, discuss and justify the technical aspects and design	Level 3:
	aspects of the project with a systematic approach.	Apply
CO3	Interpret, improve and refine technical aspects for	Level 3:
	engineering projects.	Apply
CO4	Associate with a team as an effective team player for the	Level 3:
	development of technical projects.	Apply
CO5	Report effectively the project related activities and findings.	Level 2:
		Understand

CO-PO AND CO-PSO MAPPING

\sim	PO	P01	PO	PO	PSO	PSO	PSO								
	7	2	3	4	5	6	7	8	9	0	11	12	1	2	3
CO	3	3	3	3	3	3	3	3				3	3	3	3
1															
CO	3	3	3	3	3		2	3		3	2	3	3		3
2															
CO	3	3	3	3	3	2	3	3		2	3	3	2	2	2
3															
CO	3	3	2	2				3	3	3	3	3			
4															
CO	3				2			3	2	3	2	3			
5															

JUSTIFICATIONS FOR CO-PO MAPPING

MAPPING	LOW/MEDIUM/HI	JUSTIFICATION
	GH	
C01-P01	Н	Knowledge acquired in the selected area of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of project development.
C01-P02	Н	Knowledge acquired in the selected area of project development can be used to Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions.
C01-P03	Н	Can use the acquired knowledge in designing solutions to complex problems.
C01-P04	Н	Can use research-based knowledge in the design & development of project.
C01-P05	Н	Knowledge in the area of technology for project development using IT tools makes better modelling.
CO1-PO6	Н	Creative project development assess societal, health, safety, legal and cultural issues and the consequent responsibilities.
C01-P07	Н	Project development based on societal and environmental context solution identification is the need for sustainable development.
C01-P08	Н	Project development should be based on professional ethics and responsibilities.
C01-P012	Н	Project brings technological changes in the society.
CO1-PSO1	Н	Acquiring knowledge for project development gather skills in design, analyse, develop and implementation of algorithms.
CO1-PSO2	Н	Knowledge for project development contributes engineering skills in computing & information gatherings.
C01-PS03	Н	Knowledge acquire for project development will also include systematic planning, developing, testing and implementation IT solutions in various domain.
CO2-PO1	H	Projects design and development in systematic

		approach brings knowledge in mathematics and
		engineering fundamentals.
C02-P02	Н	Identify, formulate and analyse of project makes a
		systematic approach.
C02-P03	Н	Systematic approach is the tip of solving complex
		problems in various domains.
CO2-PO4	Н	Systematic approach in the technical and design aspects
		provide valid conclusions.
C02-P05	Н	Systematic approach in the technical and design aspects
		demonstrate the knowledge of sustainable
		development.
C02-P07	М	Identification and justification of technical aspects of
		project development demonstrates the need for
		sustainable development.
C02-P08	Н	Apply professional ethics and responsibilities in
		engineering practice of development.
CO2-PO10	Н	Systematic approach also includes effective reporting
		and documentation which gives clear instructions.
C02-P011	М	Project development in systematic approach based on
		managemental principles will provides teamwork.
CO2-PO12	Н	Project development as a team in identification and
		analysis bring ability to engage in independent and
		lifelong learning.
CO2-PSO1	Н	Identification, formulation and justification in technical
		aspects will be based on acquiring skills in design and
		development of algorithms.
CO2-PSO3	Н	Identification, formulation and justification in technical
		aspects provides the betterment of life in various
		domains.
CO3-PO1	Н	Students can able to interpret, improve and redefine
		technical aspects with mathematics, science and
		engineering fundamentals for the solutions of complex
		problems.
CO3-PO2	Н	Students can able to interpret, improve and redefine
		technical aspects with identification formulation and
		analysis of complex problems.
CO3-PO3	H	Students can able to interpret, improve and redefine
		technical aspects meet the specified needs with
		appropriate consideration for the public health and
		safety, and the cultural, societal, and environmental

		considerations.
C03-P04	Н	Students can able to interpret, improve and redefine technical aspects for design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
C03-P05	Н	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools for interpret, improve and redefine.
C03-P06	М	Students can able to interpret, improve and redefine technical aspects by applying contextual knowledge to assess societal, health and consequential responsibilities relevant to professional engineering practices.
CO3-PO7	Н	Students can able to interpret, improve and redefine technical aspects demonstrate the knowledge of, and need for sustainable development.
C03-P08	Н	Students can able to interpret, improve and redefine technical aspects apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
CO3-PO10	M	Students can able to interpret, improve and redefine technical aspects communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
C03-P011	Н	Students can able to interpret, improve and redefine technical aspects demonstrate knowledge and understanding of the engineering and management principle in multidisciplinary environments.
C03-P012	H	Students can able to interpret, improve and redefine technical aspects recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
CO3-PSO1	М	Students can able to interpret, improve and redefine technical aspects in acquiring skills to design, analyse and develop algorithms and implement those using high-level programming languages.
C03-PS02	М	Students can able to interpret, improve and redefine
----------	---	--
		technical aspects contribute their engineering skills in
		computing and information engineering domains like
		network design and administration, database design
		and knowledge engineering.
C03-PS03	М	Students can able to interpret, improve and redefine
		technical aspects develop strong skills in systematic
		planning, developing, testing, implementing and
		providing IT solutions for different domains which
		helps in the betterment of life.
C04-P01	Н	Students will be able to associate with a team as an
		effective team player for the development of technical
		projects by apply the knowledge of mathematics.
		science, engineering fundamentals, and an engineering
		specialization to the solution of complex engineering
		problems.
C04-P02	Н	Students will be able to associate with a team as an
		effective team player for Identify, formulate, review
		research literature, and analyze complex
		engineering problems
C04-P03	М	Students will be able to associate with a team as an
		effective team player for designing solutions to complex
		engineering problems and design system components
C04-P04	М	Students will be able to associate with a team as an
		effective team player use research-based knowledge
		and research methods including design of experiments,
		analysis and interpretation of data
C04-P08	Н	Students will be able to associate with a team as an
		effective team player need to apply ethical principles
		and commit to professional ethics and responsibilities
		and norms of the engineering practice.
CO4-PO9	Н	Students will be able to associate with a team as an
		effective team player will function effectively as an
		individual, and as a member or leader in diverse teams,
		and in multidisciplinary settings.
CO4-PO10	Н	Students will be able to associate with a team as an
		effective team player communicate effectively on
		complex engineering activities with the
		engineering community
CO4-PO11	Н	Students will be able to associate with a team as an
		effective team player demonstrate knowledge and

		understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
CO4-PO12	Н	Students will be able to associate with a team as an effective team player recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
C05-P01	Н	Students will be able to report effectively the project related activities and findings by applying engineering specialization to the solution of complex engineering problems.
C05-P05	М	Students will be able to report effectively the project related activities and findings by apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
C05-P08	Н	Students will be able to report effectively the project related activities and findings by apply ethical principles and commit to professional ethics and responsibilities
C05-P09	М	Students will be able to report effectively the project related activities and findings which Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
C05-P010	Н	Students will be able to report effectively the project related activities and findings to give and receive clear instructions
C05-P011	М	Students will be able to report effectively the project related activities and findings to manage projects and in multidisciplinary environments
C05-P012	3	Students will be able to report effectively the project related activities and findings to engage in independent and life-long learning in the broadest context of technological change

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

✓ CHALK & TALK	✓	STUD.	✓ WEB	
		ASSIGNMENT	RESOURCES	
✓ LCD/SMART	✓	STUD.	□ ADD-ON COURSES	
BOARDS		SEMINARS		

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	✓ STUD.	□ TESTS/MODEL	\Box UNIV.
	SEMINARS	EXAMS	EXAMINATION
✓ STUD. LAB	✓ STUD. VIVA	□ MINI/MAJOR	CERTIFICATIONS
PRACTICES		PROJECTS	
ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

✓ ASSESSMENT OF COURSE OUTCOMES (BY	✓ STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE)	(TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS	□ OTHERS
BY EXT. EXPERTS	

Prepared by

Mr. Ajith Jacob

Mini Project Coordinator

Approved by

Dr. Neeba E A

HOD-IT

100008/IT622T Mini Project Schedule (Sept 2023- Dec 2023)

Sl No	Activity	Period	In- Charge
1	Group and problem statement identification	Week 1	MiniProject Coordinators
2	Submission of Project Proposal Document	Week 2	MiniProject Coordinators/Guide
3	Submission of Project Proposal Document	Week 3	MiniProject

	(Zeroth Review)		Coordinators/Guide
4	Weekly Review	Week 4	MiniProject Coordinators/Guide
5	Design Report Presentation	Week 5	MiniProject Coordinators/Guide
6	1 st Review	Week 6	Review Committee
7	Weekly Review (Code Inspection)	Week 7	MiniProject Coordinators/Guide
8	Weekly Review (Completion of Coding & Testing)	Week 8	MiniProject Coordinators/Guide
9	Submission of Project Report (Draft)	Week 9	Guide
10	2 nd Review	Week 10	Review Committee
11	Final Report Submission	Week 11	Guide/Project Coordinator

RAJAGIRI SCHOOL OF ENGINEERING AND TECHNOLOGY S5 CU(2021 SCHEME) MINI PROJECTS GROUPS AND GUIDES

GROUP MEMBERS	GUIDE NAMES	
AADARSH SURESH-U2109001	DR. NEEBA E A	
DAVID VINOJ MATHEW-U2109023		
MEGHA RAJESH-U2109039		
NEDHA FATHIMA-U2109048		
JOEHAN SEBY-U2109031		
ANN MARIYA JOY-U2109010	ED DD IAISON DAIII MIII EDICKAI CMI	
MEHFIL FAIJU-U2109040	TR. DR. JAISON I AOL MOLENICKAL CMI	
NEVIN TOM-U2109050		
THOMAS T ALEX-U2109067	DR. RANJU S KARTHA	
	GROUP MEMBERS AADARSH SURESH-U2109001 DAVID VINOJ MATHEW-U2109023 MEGHA RAJESH-U2109039 NEDHA FATHIMA-U2109048 JOEHAN SEBY-U2109031 ANN MARIYA JOY-U2109010 MEHFIL FAIJU-U2109040 NEVIN TOM-U2109050 THOMAS T ALEX-U2109067	

	BENITTA PAUL-U2109017	
	MERRIN JOHN-U2109041	
	NIHAL S-U2109051	
	AMAL THOMAS-U2109008	
	MOHAMED AHSAN-U2109045	
4	ROHAN JOHNSON-U2109058	MR. MATHEWS ABRAHAM
	ROHIT MENON-U2109059	
	BHARATH S-U2109018	
_	ROYAL SEBI PARAPPURAM-U2109061	
5	STESHA SIBI PHILIP-U2109065	MS. DIVYA JAMES
	JOEPAUL VILSAN-U2109033	
	CELINA ELIZABETH JACOB-U2109021	
ć	ANN RINTO-U2109011	
6	BHAVESH SURESH KUMAR-U2109019	MS. KUTTYAMMA A J
	VISHNU SOORAJ-U2109068	
	GAYATHRI S RAO-U2109027	
-	JUSTINA JOSEPH-U2109035	
1	ALWIN JOSEPH-U2109006	DR. NIKHILA T BHUVAN
	ALLEN PRINCE-U2109005	
	HATHIK H-U2109028	
0	NANDANA MOHIT-U2109047	
8	AMAL MANOJ-U2109007	MR. AJITH JACOB
	JOEL STANLY-U2109032	
	JESS GEORGE SAJI-U2109030	
0	S SIVA KARTHIK-U2109062	MD TINKU SOMAN LACOD
9	AMEL CHANDRA-U2109009	MR. TINKU SUMAN JACOB
	JOHAN RONY-U2109034	
	LAKSHMI-U2109036	
10	SHANE GEORGE SALPHIE-U2109063	
10	ANU LAKSHMI-U2109012	MS. VIJI MOHAN A
	MATHEW ZACHARIAH-U2109038	
	LOUIS ANTONY VINCY-U2109037	
11	TESSA SOJI CHERIAN-U2109066	Μς τανινά сμίσι εν σται ίν
11	ANUSHA K A-U2109013	M3. TANITA SHIKLET STALIN
	MOHAMMED FADIL-U2109046	
	MINAL SARA VINOD-U2109043	
12	AKSHAY.G-U2109004	
12	AORON SEBY-U2109014	
Ī	NEVIN JOYCE-U2109049	
	NIRUPAMA NAIR-U2109052	
13	AQUILINE ROSE FERNANDEZ-U2109015	MS. SHAREENA BASHEER
	BASIL AHMED USMAN-U2109016	

	PAUL DINS-U2109054	
	NOEL MATHEN ELDHO-U2109053	
14	BRIDE BENSON-U210 BADAGIRI SCHOOL OF ENGINEERING	& TECHNOLOGY MS ANCY C A
	DEA ELIZABETH VARGHESE-02109024 MEMBERS AN	D TOPIC MO. ANCI C A
_	REHANDENIII ALUNIZ GROUP MEMBERS	PROJECT TOPIC
	RIAN AADARSH SURESH-U2109001	
	MILLI DAVID VINOJ MATHEW-U2109023	LIOTEL MANACEMENT SYSTEM
15	MISH MEGHA RAJESH-U2109039	MS. JESHMOL P J
	AILL NEDHA FATHIMA-U2109048	
	BOSH JOEHAN SEBY-U2109031	AUTOMATED CUSTOMER
16	ANN MARIYA JOY-U2109010	SATISFACTIONSURVEYSTEM
10	CHIT MEHFIL FAIJU-U2109040	USING AI FACIAL EXPRESSION
	SUDI NEVIN TOM-U2109050	ALGORITHMS
17	DEVI THOMAS T ALEX-U2109067	RECRUITMENT BASED WEBSITE
17	DUDA BENITTA PAUL-U2109017	CATERING TO PROVIDE
	WOLL MERRIN JOHN-U2109041	TRADESMEN TO HIRE,
	YUHA	DEPENDINGON THE
18	JAYA NIHAL S-U2109051	CNEB.GIRARHI SAMAOIGATION
	ABHAY SOORAJ-U2109002	

	AMAL THOMAS-U2109008		
4	MOHAMED AHSAN-U2109045		
	ROHAN JOHNSON-U2109058	PLACEMENT CELL	
	ROHIT MENON-U2109059		
_	BHARATH S-U2109018		
	ROYAL SEBI PARAPPURAM-U2109061		
5	STESHA SIBI PHILIP-U2109065	SMART STOCK PRO	
	JOEPAUL VILSAN-U2109033		
	CELINA ELIZABETH JACOB-U2109021	STOCKSAVVY	
6	ANN RINTO-U2109011		
6	BHAVESH SURESH KUMAR-U2109019		
	VISHNU SOORAJ-U2109068		
	GAYATHRI S RAO-U2109027		
7	JUSTINA JOSEPH-U2109035	FOOD SERVICE MANAGEMENT	
	ALWIN JOSEPH-U2109006	SYSTEM	
	ALLEN PRINCE-U2109005		
	HATHIK H-U2109028		
0	NANDANA MOHIT-U2109047		
0	AMAL MANOJ-U2109007		
	JOEL STANLY-U2109032		
	JESS GEORGE SAJI-U2109030		
0	S SIVA KARTHIK-U2109062	HEALTH HUB: YOUR HEALTHCARE	
9	AMEL CHANDRA-U2109009	COMPANION	
	JOHAN RONY-U2109034		
	LAKSHMI-U2109036		
10	SHANE GEORGE SALPHIE-U2109063	Ενέντ μαναζεμέντεν	
10	ANU LAKSHMI-U2109012		
	MATHEW ZACHARIAH-U2109038		
	LOUIS ANTONY VINCY-U2109037		
11	TESSA SOJI CHERIAN-U2109066	STUDENT RESOURCE SHARING	
	ANUSHA K A-U2109013	SYSTEM	
	MOHAMMED FADIL-U2109046		
	MINAL SARA VINOD-U2109043		
12	AKSHAY.G-U2109004	BIBLIO TECH: AN INNOVATIVE	
	AORON SEBY-U2109014	LIBRARY ECOSYSTEM	
	NEVIN JOYCE-U2109049		
	NIRUPAMA NAIR-U2109052		
13	AQUILINE ROSE FERNANDEZ-U2109015	RATION SHOP MANAGEMENT	
	BASIL AHMED USMAN-U2109016	SYSTEM	
	PAUL DINS-U2109054		
14	NOEL MATHEN ELDHO-U2109053	CAMPUS CATALYST- STUDENT	
	BRIDE BENSON-U2109020	LIFESTYLE MANAGEMENT SYSTEM	

	DEA ELIZABETH VARGHESE-U2109024		
	REHAN RENJU ALUNKAL-U2109056		
	RIA MARY SUNIL-U2109057	RAJAGIRI CANTEEN CONNECT	
15	MILIN SHOY-U2109042		
15	MISHEL MARY NETTO-U2109044		
	AJIL SHAJI-U2109003		
	ROSHNI ALDRIN-U2109060		
16	ZAHRAH MUHAMMED-U2109070	AQUASYNC	
	CHITHRALEKSHMI R-U2109022		
	SHRUTI MARIA SHIBU-U2109064		
17	DEVIKA S-U2109025	AI POWERED CV BULIDER	
	DURGA RAMASESHAN-U2109026		
18	YOHAN JOSE THUNDIL-U2109069	DINECCAN DICITAL DINING MADE	
	JAYASANKAR C M-U2109029	DINESCAN: DIGITAL DINING MADE	
	ABHAY SOORAJ-U2109002		