

COURSE HAND-OUT

B.TECH. - SEMESTER VIII

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING (EC), RSET

VISION

TO EVOLVE INTO A CENTRE OF EXCELLENCE IN ELECTRONICS AND COMMUNICATION ENGINEERING, MOULDING PROFESSIONALS HAVING INQUISITIVE, INNOVATIVE AND CREATIVE MINDS WITH SOUND PRACTICAL SKILLS WHO CAN STRIVE FOR THE BETTERMENT OF MANKIND

MISSION

TO IMPART STATE-OF-THE-ART KNOWLEDGE TO STUDENTS IN ELECTRONICS AND COMMUNICATION ENGINEERING AND TO INCULCATE IN THEM A HIGH DEGREE OF SOCIAL CONSCIOUSNESS AND A SENSE OF HUMAN VALUES, THEREBY ENABLING THEM TO FACE CHALLENGES WITH COURAGE AND CONVICTION

B.TECH PROGRAMME

Program Outcomes (POs)

Engineering students will be able to

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, Engineering fundamentals, and Electronics and Communication Engineering to the solution of complex Engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and Engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.
- 6. **The Engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional Engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional Engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex Engineering activities with the Engineering Community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life -long learning: Recognize the need for, and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change.

Program-Specific Outcomes (PSOs)

Engineering students will be able to:

- 1. Demonstrate their skills in designing, implementing and testing analogue and digital electronic circuits, including microprocessor systems, for signal processing, communication, networking, VLSI and embedded systems applications;
- 2. Apply their knowledge and skills to conduct experiments and develop applications using electronic design automation (EDA) tools;
- 3. Demonstrate a sense of professional ethics, recognize the importance of continued learning, and be able to carry out their professional and entrepreneurial responsibilities in electronics engineering field giving due consideration to environment protection and sustainability.

INDEX

1.	SEMESTER PLAN	6
2.	SCHEME	7
3.	NANO ELECTRONICS	8
	3.1. COURSE INFORMATION SHEET	9
	3.2. COURSE PLAN	16
	3.3. SAMPLE QUESTIONS	18
4.	ADVANCED COMMUNICATION SYSTEMS	20
	4.1. COURSE INFORMATION SHEET	21
	4.2. COURSE PLAN	26
	4.3. SAMPLE QUESTIONS	27
5.	SECURE COMMUNICATION	29
	5.1. COURSE INFORMATION SHEET	30
	5.2. COURSE PLAN	35
	5.3 SAMPLE QUESTIONS	36
6.	CYBER SECURITY	37
	6.1. COURSE INFORMATION SHEET	38
	6.2. COURSE PLAN	45
	6.3. SAMPLE QUESTIONS	46
7.	PROJECT	47
	7.1. COURSE INFORMATION SHEET	48
	7.2. GUIDELINES FOR EC 451 SEMINAR & PROJECT PRELIMINARY & EC 492 PROJECT	г 51

1. SEMESTER PLAN

2. SCHEME

	~	_		H	ours/W	~	
SLOT	C	ode	Subject	L	Т	Credits	
А	EC	402	Nano Electronics	3	0	0	3
В	EC404		Advanced Communication Systems	3	0	0	3
С	ELECT RIVE 4	EC468 EC466	Secure Communication Cyber Security	3	0	0	3
D	ELECTIVE 5		Non Departmental	3	0	0	3
S	EC492		Project				6

EC 402

NANO ELECTRONICS

COURSE INFORMATION SHEET

PROGRAMME: Electronics &	DEGREE: BTECH				
Communications Engineering					
COURSE: Nanoelectronics	SEMESTER: S8 CREDITS:				
	3				
COURSE CODE:	COURSE TYPE:				
EC402 REGULATION:	CORE/ELECTIVE / BREADTH/				
2016	S&H				
COURSE AREA/DOMAIN: ELECTRONICS	CONTACT HOURS: 4				
	hours/Week.				
CORRESPONDING LAB COURSE CODE	LAB COURSE NAME:				
(IF ANY):					

SYLLABUS:

UNIT	DETAILS	HOURS						
Introduction to nanotechnology, Mesoscopic physics, trends in microelectronics and optoelectronics, characteristic lengths in mesoscopic systems, Quantum mechanical cohere Schrodinger's Equation, wave function, Low dimensional structures Quantum wells, Basic properties of two dimensional semiconductor nanostructures, Quantum wires and quantum carbon nano tube, grapheme, Introduction to methods of fabrication of nano-layers, Introduct o characterization of nanostructures, Principle of operation of Scanning Tunnelling Micro X-Ray Diffraction analysis, MOSFET structures, Quantum wells, modulation doped quant wells, multiple quantum wells, The concept of super lattices, Transport of charge in Nanostructures under Electric field, Transport of charge in magnetic field, Nanoelectonic devices, principle of NEMS								
	Introduction to nanotechnology, Impacts, Limitations of conventional microelectronics, Trends in microelectronics and optoelectronics Mesoscopic physics, trends in microelectronics and optoelectronics, characteristic lengths in mesoscopic systems, Quantum mechanical coherence							
1	Classification of Nano structures, Low dimensional structures Quantum wells, wires and dots, Density of states and dimensionality Basic properties of two dimensional semiconductor nanostructures, square quantum wells of finite depth, parabolic and triangular quantum wells	7						
	Quantum wires and quantum dots, carbon nano tube, graphene							
2	Introduction to methods of fabrication of nano-layers, different approaches, physical vapour deposition, chemical vapour deposition Molecular Beam Epitaxy, Ion Implantation, Formation of Silicon Dioxide- dry and wet oxidation methods. Fabrication of nano particle- grinding with iron balls, laser ablation,	6						

	reduction methods, sol gel, self assembly, precipitation of quantum dots	
3	Introduction to characterization of nanostructures, tools used for of nano materials characterization, microscope-optical, electron, and electron microscope. Principle of operation of Scanning Tunnelling Microscope, Atomic Force Microscope, Scanning Electron microscope, Specimen interaction. Transmission Electron Microscope X-Ray Diffraction analysis, PL & UV Spectroscopy, Particle size analyser.	6
4	Two dimensional electronic system, two dimensional behaviour, MOSFET structures, Heterojunctions Quantum wells, modulation doped quantum wells, multiple quantum wells The concept of super lattices Kronig - Penney model of super lattice.	6
5	Transport of charge in Nanostructures under Electric field - parallel transport, hot electrons, perpendicular transport. Quantum transport in nanostructures, Coulomb blockade Transport of charge in magnetic field - Effect of magnetic field on a crystal. Aharonov-Bohm effect, the Shubnikov-de Hass effect, the quantum Hall effect	7
6	Nanoelectonic devices- MODFETS, heterojunction bipolar transistors Resonant tunnel effect, RTD, RTT, Hot electron transistors Coulomb blockade effect and single electron transistor, CNT transistors Heterostructure semiconductor laser Quantum well laser, quantum dot LED, quantum dot laser Quantum well optical modulator, quantum well sub band photo detectors, principle of NEMS.	10
	TOTAL HOURS	42

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
Т	J.M. Martinez-Duart, R.J. Martin Palma, F. Agulle Rueda Nanotechnology for
	Microelectronics and optoelectronics, Elsevier, 2006
Т	W.R. Fahrner, Nanotechnology and Nanoelctronics, Springer, 2005
R	Chattopadhyay, Banerjee, Introduction to Nanoscience & Technology, PHI, 2012
R	George W. Hanson, Fundamentals of Nanoelectronics, Pearson Education, 2009
R	K. Goser, P. Glosekotter, J. Dienstuhl, Nanoelectronics and nanosystems, Springer 2004
R	
	Murty, Shankar, Text book of Nanoscience and Nanotechnology, Universities Press, 2012
R	Poole, Introduction to Nanotechnology, John Wiley, 2006.

R	Sup	priyo Dutta, Quantum Transport- Atom to transistor, Cambridge, 2013									
COU	COURSE PRE-REQUISITES:										
C.CODE COURSE NAME DESCRIPTION SE											
EC203			Student should have knowledge of basic	3							
		Solid State	semiconductor physics								
		Devices									
EC3	04	VLSI	Student should have knowledge of basic fabrication	6							
	techniques in VLSI										
COU	COURSE OBJECTIVES:										

1	
	To impart knowledge in different aspects of processor design
2	
	To develop understanding about processor architecture.
3	
	To impart knowledge in programming concepts
4	
	To develop understanding on I/O accessing techniques and memory structures

COURSE OUTCOMES:

Sl	DESCRIPTION	BLOOM'S TAXONOMY
No.		LEVEL
1	Understand the basic concepts of mesophysics and nanostructures	Understand (level 2)
2	Understand about the methods used for fabrication of Nano layers and Nanoparticles	Understand (level 2)
3	Understand about the tools used for characterisation and analysis of Nano materials	Understand (level 2)
4	Understand the concept of 2D behaviour and superlattice	Understand (level 2)
5	Understand about charge transport & quantum transport in nanostructures	Understand (level 2)
6	Understand the working of different nanoelectronic devices	Understand (level 2)

CO MAPPING WITH PO, PSO

			F	rog	ram	me	Out	com	es (1	POs)		Programme	Specific Outc	omes (PSOs)	
CO No.	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3		2	1							1	2		1
2	2	3		2	1	1						1	2		1
3	3	2		2	3	1						1	1		1
4	3	2		3								1			2
5	3	2		3								1			2
6	2	1	2	2	1		1					1	3	1	1
EC402	3	2	2	2	2	1	1					1	1	1	1

JUSTIFICATION FOR CO-PO-PSO CORRELATION: JUSTIFICATION FOR CO-PO MAPPING

MAPPING	LEVEL	JUSTIFICATION
EC402.1-	3	
PO1	-	Concepts of mesophysics and nanostructures involves applying the knowledge of
		mathematics, science to find solutions to complex engineering problems
EC402.1-	3	
PO2		Concepts of mesophysics and nanostructures uses the principles of mathematics, natural sciences and engineering sciences for analysis
EC402.1-	2	
PO4		Design of experiments, analysis and interpretation of data is required to understand the concepts of mesophysics and nanostructures
EC402.1-	1	
PO5		Modern engineering tools are required to understand the concepts of mesophysics and nanostructures
EC402.1-	1	
PO12	1	
EC402.2		Concepts of mesophysics and nanostructures can cause technological change
PO1	2	Methods for fabrication involves applying the knowledge of mathematics, science
101		and engineering fundamentals to find solutions to complex engineering problems
EC402.2-	2	
PO2	5	Methods for fabrication of nanolayers and nanoparticles uses first principles of
56402.2		mathematics, natural sciences and engineering sciences
EC402.2-	2	Matheds for fabrication of papelayers and papenarticles includes analysis and
P04		interpretation of data
EC402.2-	1	
PO5		Methods for fabrication of nanolayers and nanoparticles uses moder engineering and IT tools
EC402.2-	1	
PO6		Methods for fabrication of nanolayers and nanoparticles should be done in a safe and
		healthy environment
EC402.2-	1	
P012		Methods for fabrication of nanoparticles can cause technological change
EC402.3-	3	Characterization and analysis of nanomaterials is a complex engineering problem
PO1		which applies the knowledge of mathematics, science
EC402.3-	2	Tools used for characterisation and analysis of Nano materials is a complex
PO2		engineering problem which is concluded using first principles of mathematics, natural sciences and engineering sciences
		manematics, natural sciences and engineering sciences
EC402.3-	2	Characterization and analysis of Nano materials is basically an investigation
PO4		of complex problems
50402.2		
EC402.3-	3	1 001s used for characterisation and analysis of Nano materials is done with the help of modern engineering tools
202		the help of modern engineering tools

EC402.3- PO6	1	Health, safety and legal consequences of the tools has to be dealt with
EC402.3- PO12	1	Tools used for characterisation and analysis of Nano materials can help in causing a technological change
EC402.4- PO1	3	Concepts of 2D behavior and supper lattice requires knowledge of mathematics, science
EC402.4- PO2	2	2D behaviour and super lattice uses first principles of mathematics, natural sciences and engineering sciences
EC402.4- PO4	3	2D behaviour and super lattice helps in analysis and interpretation of nanoelectronic devices
EC402.4- PO12	1	2D behaviour and super lattice causes forms the basic concepts that can cause a technological change
EC402.5- PO1	3	Charge transport in nanostructures involves applying the knowledge of mathematics, science and engineering fundamentals to find solutions to complex engineering problems
EC402.5- PO2	2	Charge transport & quantum transport in nanostructures uses first principles of mathematics, natural sciences and engineering sciences
EC402.5- PO4	3	Charge transport & quantum transport in nanostructures helps in analysis and interpretation of nanoelectronic devices
EC402.5- PO12	1	Charge transport & quantum transport in nanostructures causes forms the basic concepts that can cause a technological change
EC402.6- PO1	2	Nanoelectronic devices involves applying the knowledge of mathematics, science, engineering fundamentals and ECE
EC402.6- PO2	1	Nanoelectronic devices are based on principles of mathematics, natural sciences and engineering sciences
EC402.6- PO3	2	Nanoelectronic devices should be made with the consideration of public health & safety, and environmental considerations
EC402.6- PO4	2	Nanoelectronic devices are analysed and interpreted to provide valid conclusions
EC402 PO5	1	Analysis of nanoelectronic devices are done using modern engineering tools
EC402.6- PO7	1	Nanoelectronic devices should be designed for sustainable development
EC402.6- PO12	1	Nanoelectronic devices are expected to change technological world in near future.

JUSTIFICATION FOR CO-PSO MAPPING

MAPPING	LEVEL	JUSTIFICATION

EC402.1- PSO1	2	Concepts of mesophysics and nanostructures can be used for VLSI applications
EC402.1- PSO2	1	In mesophysics EDA tools can be used for doing experiments
EC402.2- PSO1	2	Methods used for fabrication can be applied in VLSI
EC402.2- PSO2	1	Fabrication of nanolayers and nanoparticles involves the usage of EDA tools
EC402.3- PSO1	1	Characterization and analysis of nanomaterials involves the usage of signal processing fundamentals
EC402.3- PSO2	1	Characterization and analysis of nanomaterials involves the usage of EDA tools
EC402.4- PSO3	2	Concept of 2D behavior and supper lattice is the basic concept in creating future electronics products
EC402.5- PSO3	2	Charge transport in nanostructures is the basic concept used in future nano electronic devices.
EC402.6- PSO1	3	Different nanoelectronic devices can be used in signal processing communication and VLSI & ES applications
EC402.6- PSO2	1	Experiments using nanoelectronic devices requires EDA tools
EC402.6- PSO3	1	Nanoelectronic devices has to be used in future electronic products considering environment protection and sustainability.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED	PO	
		ACTIONS	MAPPING	
1	VLSI second order effects – Limitations of microelectronics	Class Seminars/Assignments	1,2,3,4	

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURE/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

S No:	DESCRIPTION	PO MAPPING
1	•	1, 2, 3, 4
	Nanoimprinting and nanopolishing	

DESIGN AND ANALYSIS TOPICS:

Sl. No.	DESCRIPTION	PO MAPPING
1	DOS plotting	1,2,3,4,9,12

WEB SOURCE REFERENCES:

1 http://www.nptelvideos.in/2012/11/particle-characterization.html

https://www.coursera.org/learn/nanotechnology

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

🗆 CHALK &	□ STUD.	□ WEB	□ LCD/SMART
TALK√	ASSIGNMENT√	RESOURCES√	BOARDS
□ STUD.	□ ADD-ON	□ GOOGLE	□ VIDEO
SEMINARS√	COURSES	CLASSROOM√	RECORDINGS√

ASSESSMENT METHODOLOGIES-DIRECT

☑ ASSIGNMENTS	☑ STUD.	☑ TESTS/MODEL	\Box UNIV.
	SEMINARS	EXAMS	EXAMINATION
□STUD. LAB	□ STUD.	□ MINI/MAJOR	
PRACTICES	VIVA	PROJECTS	CERTIFICATIONS
□ ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

☑ ASSESSMENT OF COURSE OUTCOMES	☑ STUDENT FEEDBACK ON
(BY FEEDBACK, ONCE)	FACULTY (TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS	□ OTHERS
BY EXT. EXPERTS	

Prepared by

Approved by

Dr. Simi Z S Mr. Kiran K A Mr. Bonifus P L (Faculty members in Charge)

Dr. Rithu James (HoD)

COURSE PLAN

No	Торіс	No. of Lectures
	Introduction to nanotechnology, Impacts, Limitations of conventional microelectronics, Trends in microelectronics and optoelectronics	
	Mesoscopic physics, trends in microelectronics and optoelectronics, characteristic lengths in mesoscopic systems, Quantum mechanical coherence	
1	Classification of Nano structures, Low dimensional structures Quantum wells, wires and dots, Density of states and dimensionality	7
	Basic properties of two dimensional semiconductor nanostructures, square quantum wells of finite depth, parabolic and triangular quantum wells	
	Quantum wires and quantum dots, carbon nano tube, graphene	
2	Introduction to methods of fabrication of nano-layers, different approaches, physical vapour deposition, chemical vapour deposition Molecular Beam Epitaxy, Ion Implantation, Formation of Silicon Dioxide- dry and wet oxidation methods. Fabrication of nano particle- grinding with iron balls, laser ablation, reduction methods, sol gel, self assembly, precipitation of quantum dots.	6
3	Introduction to characterization of nanostructures, tools used for of nano materials characterization, microscope-optical, electron, and electron microscope. Principle of operation of Scanning Tunnelling Microscope, Atomic Force Microscope, Scanning Electron microscope, Specimen interaction. Transmission Electron Microscope X-Ray Diffraction analysis, PL & UV Spectroscopy, Particle size analyser.	6
4	Two dimensional electronic system, two dimensional behaviour, MOSFET structures, Heterojunctions Quantum wells, modulation doped quantum wells, multiple quantum wells The concept of super lattices Kronig - Penney model of super lattice.	6
5	Transport of charge in Nanostructures under Electric field - parallel transport, hot electrons, perpendicular transport. Quantum transport in nanostructures, Coulomb blockade Transport of charge in magnetic field - Effect of magnetic field on a crystal. Aharonov-Bohm effect, the Shubnikov-de Hass effect, the quantum Hall effect	7

6	Nanoelectonic devices- MODFETS, heterojunction bipolar transistors Resonant tunnel effect, RTD, RTT, Hot electron transistors Coulomb blockade effect and single electron transistor, CNT transistors Heterostructure semiconductor laser Quantum well laser, quantum dot LED, quantum dot laser Quantum well optical modulator, quantum well sub band photo detectors, principle of NEMS.	10
5.2	Amplifiers – Block diagram of Public Address system. Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response, Concept of voltage divider biasing.	4
5.3	Electronic Instrumentation – Block diagram of an electronic instrumentation system.	2
6	Introduction to Communication Systems (7 hours)	
6.1	Evolution of communication systems – Telegraphy to 5G.	1
6.2	Radio communication – Principle of AM & FM, frequency bands used for various communication systems, block diagram of superheterodyne receiver.	4
6.3	Mobile communication – Basic principles of cellular communications, principle and block diagram of GSM.	2

SAMPLE QUESTION

Module I

- 1. Mention the impact of nanotechnology on electronics
- 2. List out what are the limitations of conventional microelectronics?
- 3. Explain the different characteristic lengths in mesoscopic systems.
- 4. Write notes on any four characteristic lengths in mesoscopic systems?
- 5. What is meant by quantum mechanical coherence? Explain.
- 6. Classification of Nano structures
- 7. Explain the classification of nanostructures according to the dimensionality.
- 8. Differentiate between quantum well and quantum dot?
- 9. Density of States and Dimensionality
- 10. What is meant by density of states function? How it differs for 0D, 1D and 2D systems?
- **11.** Starting from Schrodinger equation, show that the density of states in a 2D nano material is independent of energy.
- 12. Starting from Schrodinger equation, show that the density of states in a 1D semiconductor material is directly proportional to $1/\sqrt{E}$
- 13. How the density of states function varies with dimensionality?
- 14. Draw the density of states for a 1D and 0D electron system and explain?
- 15. Basic Properties of Two Dimensional Semiconductor Nanostructures
- 16. What is quantum well? Explain the density of states in a quantum well?
- 17. With suitable equations explain a square quantum well.
- 18. Show the energy level diagrams and wavefunctions in a finite quantum well.
- 19. Describe parabolic quantum well.
- 20. Differentiate between parabolic and triangular quantum well. Explain the features?
- 21. (Compare and contrast parabolic potential well and triangular potential well) 6)
- 22. Show the energy level diagram and wavefunctions of triangular quantum well.
- 23. Quantum Wires and Quantum Dots
- 24. Write short notes on a) quantum dot b) quantum wire
- 25. How a quantum wire is different from a quantum dot. Explain?
- 26. What are the possible energy levels in a quantum wire?
- 27. What is quantum dot? Give the energy equations?
- **28.** What is quantum dot? Write down the expression for the ground state energy of spherical quantum well.

Module-II

- 1. Explain the different types of PVD techniques.
- 2. Explain the process of PVD.
- 3. Explain any two physical vapour deposition process?
- 4. What are the differences between evaporation and sputtering?
- 5. Compare DC and RF sputtering.
- 6. Brief up laser ablation method for nano material deposition with significance on RHEED screen.
- 7. Briefly explain the concept of Laser Ablation.

Module-III :

- 1. Compare electron and optical microscope.
- 2. What is an optical microscope? How it is different from the electron microscope? 3)
- **3.** Why electron microscopes show higher resolution compared to the optical microscopes?
- 4. What is the basic principle behind scanning probe microscopy?
- 5. Compare AFM and STM.
- 6. With a schematic diagram, describe the principle of scanning tunneling microscope?
- 7. (Explain the principle of operation of STM)
- 8. What is the basic principle behind STM? What are the different modes of operation?
- 9. Explain the working principle of Atomic Force Microscope.
- 10. 6) List the benefits of using carbon nanotubes for AFM tips?

Module-IV

- **1.** Explain the concept of modulation doping (What is meant by modulation doping?)
- 2. Explain modulation doping and why mobility of carrier increases in modulation doped
- **3.** structure.
- 4. What are the important characteristics of heterostructures?
- 5. Explain how conductivity is increased in 2D electron gas in AlGaAs-GaAs structure.
- 6. Compare MQW with superlattice structure.
- 7. (Differentiate between a MQW and superlattice)
- 8. Explain Multiple Quantum Wells and its different types with neat diagrams.
- 9. What are the two different types of MQW?
- **10.** What is a superlattice?

Module-V

- 1. Explain perpendicular transport in quantum structure. (What is perpendicular transport?
- 2. What is Bloch oscillation? Give an expression for the period of Bloch oscillation.
- 3. Explain quantum transport in nanostructure and give Landauer Formula.
- 4. Define quantized conductance.
- 5. Derive Landauer Formula and explain its significance (State & explain Landauer formula) Coulomb Blockade

Module-VI

- 1. With the help of neat schematic diagram explain MODFETs.
- 2. (Write a short note on MODFETs)
- 3. List the advantages of heterojunction quantum wells in MODFETs?
- 4. 3MODFETs are known as high electron mobility transistor (HEMT). Justify with the help of energy band diagram.
- 5. Draw the structure of HEMT. Give its features.
- 6. Explain Resonant Tunnel Effect and the operation of Resonant Tunnel Diodes.
- 7. Illustrate the principle of operation of Resonant tunnelling diode.
- 8. With relevant diagrams, explain the IV characteristics of resonant tunnel diode.
- 9. What is resonant tunnelling? (Explain resonant tunnel effect)

EC 404

ADVANCED COMMUNICATION SYSTEM

COURSE INFORMATION SHEET

PROGRAMME: ELECTRONICS AND COMMUNICATION ENGINEERING	DEGREE: B. TECH UNIVERSITY: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
COURSE: ADVANCED COMMUNICATION SYSTEMS	SEMESTER: S8 CREDITS: 3
COURSE CODE: EC404 REGULATION: 2015	COURSE TYPE: CORE
COURSE AREA/DOMAIN: COMMUNICATION	CONTACT HOURS: 3 (L) hours/week
CORRESPONDING LAB COURSE CODE (IF ANY): EC431	LAB COURSE NAME: COMMUNICATION SYSTEMS LAB [OPTICAL & MICROWAVE]

SYLLABUS:

UNIT	DETAILS	HOURS
I.1	Microwave Radio Communications : Introduction, Advantages and Disadvantages, Analog vs digital microwave, frequency vs amplitude modulation	1
I.2	Frequency modulated microwave radio system, FM microwave radio repeaters	1
I.3	Diversity, protection switching arrangements, FM microwave radio stations, microwave repeater station, line of sight path characteristics	2
II.1	Digital TV: Digitized Video, Source coding of Digitized Video, Compression of Frames, DCT based (JPED), Compression of Moving Pictures (MPEG). Basic blocks of MPEG2 and MPE4,Digital Video Broadcasting (DVB)	4
II.2	Modulation: QAM (DVB-S, DVB-C), OFDM for Terrestrial Digital TV (DVB –T). Reception of Digital TV Signals (Cable, Satellite and terrestrial). Digital TV over IP, Digital terrestrial TV for mobile	4
II.3	Display Technologies: basic working of Plasma, LCD and LED Displays	2
III.1	Satellite Communication systems, introduction, Kepler's laws, orbits, orbital effects, orbital perturbations	2
III.2	Satellite sub systems, Antennas, Transponders, earth station technology, Link calculation	2
III.3	Satellite systems- GEO systems, non-GEO communication systems, Satellite Applications- Global Positioning System, Very Small Aperture Terminal system, Direct to Home Satellite Systems	3
IV.1	Evolution of mobile radio communications, paging systems, Cordless telephone systems, comparison of various wireless systems	2
IV.2	Introduction to Modern Wireless Communication Systems, Second generation cellular networks, third generation wireless networks, fourth generation wireless technologies	1
IV.3	Wireless in local loop, wireless local area networks, Blue tooth and Personal Area networks, Over view of WIMAX Technologies, architecture, spectrum allocation	2
V.1	Cellular concept, hand off strategies, Interference and system capacity: Cell splitting, Sectoring, Repeaters, and Microcells. Cellular System Design Fundamentals: Frequency Reuse, channel assignment strategies, handoff Strategies, Interference and system capacity, tracking and grade off service, improving coverage and capacity	3

V.2	Wireless propagation mechanism, free space propagation model, ground reflection model, knife edge diffraction model, path loss prediction in hilly terrain, introduction to fading and diversity techniques, Introduction to MIMO system	3
VI.1	Introduction to Multiple Access, FDMA, TDMA, Spread Spectrum multiple Access, space division multiple access, CDMA, OFDM	2
VI.2	Wireless Networking, Difference between wireless and fixed telephone networks, development of wireless networks, fixed network transmission hierarchy, traffic routing in wireless networks, wireless data services, Wireless standards,	2
VI.3	GSM system architecture, radio link aspects, network aspects	1
VI.4	Introduction to new data services like High Speed Circuit Switched Data (HSCSD), General Packet Radio Service (GPRS), Digital Enhanced Cordless Telecommunications (DECT), Enhanced Data Rate for Global Evolution (EDGE), Ultra wideband systems (UWB), Push To Talk (PTT) technology, Mobile IP	5
	TOTAL HOURS	24

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	Herve Benoit, Digital Television Satellite, Cable, Terrestrial, IPTV, Mobile TV in the DVB
	Framework, 3/e, Focal Press, Elsevier, 2008
T2	Dennis Roody, Satellite communication, 4/e, McGraw Hill, 2006.
T3	Theodore S. Rappaport: Wireless communication principles and practice, 2/e, Pearson
	Education, 1990
T4	Simon Haykin, Michael Mohar, Modern wireless communication, Pearson
	Education,2008
R 1	Jochen Schiller, Mobile Communications, Pearson, 2008.
R2	Mishra, Wireless communications and Networks, McGraw Hill, 2/e, 2013.
R3	Nathan, Wireless communications, PHI, 2012.
R4	Singal, Wireless communications, Mc Graw Hill, 2010.
R5	Tomasi, Advanced Electronic Communication Systems, 6/e, Pearson, 2015.
R6	W.C.Y.Lee, Mobile Cellular Telecommunication, McGraw Hill, 2010.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
EC208	Analog Communication	Basics of Analog Communication	IV
	Engineering		
EC302	EC302 Digital Communication	Basics of Digital Communication	VI
EC403	Microwave & Radar Engineering	Basics of MW devices and Radar	VII
		systems	

COURSE OBJECTIVES:

1 To introduce the students to the basic principles of mechanical engineering

COURSE OUTCOMES:

ST		Blooms'
SL. NO.	DESCRIPTION	Taxonomy
		Level

	Students will be able to <i>understand</i> the important concepts of	Understand and
C0.1	Microwave Radio Communication system and will be able to analyze	Analyze
	diversity and protection switching systems	(level 2, 4)
C0.2	Students will be able to <i>Illustrate</i> the working and features of Digital	Understand
C0.2	TV and can <i>identify</i> the scope of digital TV over IP	(level 2)
	Students will be able to <i>identify</i> the different components of a Satellite	
C0.3	Communication System and <i>differentiate</i> among various Satellite	Understand
	Applications- Global Positioning System, Very Small Aperture	(level 2)
	Terminal system, Direct to Home Satellite Systems.	
C0 4	Students will be able to <i>understand</i> the evolution of mobile radio	Understand
C0.4	communication system and working of WIMAX, Bluetooth etc.	(level 2)
	Students will be able to <i>understand</i> the design of cellular system	
C0.5	fundamentals and will be able to select appropriate transmission path	Apply (level 3)
	model for a specific terrain requirement.	
	Students will be able to <i>understand</i> wireless networking techniques and	Understand and
C0.6	rate various data services like HSCSD_GPPS_DECT atc	evaluate
	Tate various data services like HSCSD, OFKS, DECT etc.	(level 2,5)

CO-PO AND CO-PSO MAPPING

	P	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	PS	PS	PS
	0	0	0	0	0	0	0	0	0	0	0	0	Ο	Ο	Ο
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	2									3	2	
CO 2	2	3	2	3									2	1	
CO 3	3	3	3	2					1				3	3	
CO 4	2	3	3	3					1				3	3	
CO 5	2	3	3	2						2			3	2	2
CO 6	3	3	3							2		2	2	1	2

JUSTIFATIONS FOR CO-PO MAPPING

MAPPING	NG LOW/MEDIUM/HIGH JUSTIFICATION		
CO1-PO1	Н	Line of sight path loss calculation	
CO1-PO2	Н	Diversity	
CO1 PO3	Ц	Design of FM MW radio transmitter and	
01-105	11	receiver	
CO1-PO4	М	Protection switching arrangements	
CO1-PSO1	Н	MW Repeater station	
CO1-PSO2	М	FM mw Radio system	
CO2-PO1	-PO1 M DCT based Compression		

CO2-PO2	Н	Modulation:DVB-S ,DVB-C		
CO2-PO3	М	JPEG,MPEG Coding		
CO2-PO4	Н	OFDM for DVB-T		
	М	Design and implementation of DVB-S,DVB-		
C02-F501	IVI	C,DVB-T Receiver		
	I	Source coding and channel coding of video		
C02-F502	L	signals		
CO3-PO1	Н	Satellite link calculation		
CO3-PO2	Н	Analysis of Satellite sub systems		
CO3-PO3	Н	Design of antennain satellitecommn system		
CO3-PO4	М	Analysis of GEO And Non-GEO		
05-104	171	Communication systems		
CO3-PO9	T	Individual and group assignments in various		
005-107	L	satellite applications		
CO3-PSO1	Н	Design and implementation of satellite		
0051001	11	communication systems		
CO3-PSO2	Н	Orbits, Orbital effects, Orbital perturbations		
CO4-PO1	М	Mobile radio communication		
CO4-PO2	Н	Identify and compare various wireless systems		
CO4-PO3	Н	Introduction to modern wireless communication		
		system		
CO4-PO4	Н	Analysis of Spectrum allocation		
CO4-PO9	L	Individual and group assignments		
CO4-PSO1	Н	Design and implementation of wireless local area		
		networks		
CO4-PSO2	Н	Overview of WIMAX Technologies		
CO5-PO1	М	Channel Allocation, wireless propagation models		
CO5-PO2	Н	Traffic Intensity		
CO5-PO3	Н	Overview of Design of cellular system		
CO5-PO4	М	Handoff strategies		
CO5-PO10	М	Seminar		
CO5-PSO1	Н	Cellular design fundamentals		
CO5-PSO2	М	Introduction to MIMO system		
CO6-PO1	Н	Multiple Access Techniques		
CO6-PO2	Н	Traffic routing in wireless networks		
CO6-PO3	Н	Multiple access design		
CO6-PO10	М	Seminar		
CO6-PSO1	М	Review and analysis of CDMA system		
CO6-PSO2	L	GSM System Architecture		
CO6-PSO3	М	Assignment, Seminar and Study of system		

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SL	DESCRIPTION	PROPOSED	RELEVANCE	RELEVANCE
NO		ACTIONS	WITH POs	WITH PSOs
1	Monochrome TV Basics	ASSIGNMENT	1	-

2	DVI and HDMI links for interconnecting digital audiovisual equipment	ASSIGNMENT	1	
3	Discrete Cosine Transform	TUTORIAL	1	-

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SL NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Introduction to 5G	Lectures	1	-
2	Introduction to massive MIMO	Lectures	1	-
3	High Definition Television (HDTV)	Video lectures	1	-
4	Spectrum Allocation in Cognitive Radio	Lectures	1	-

WEB SOURCE REFERENCES:

1 nptel.iitm.ac.in

2 ocw.mit.edu

3 www.utexas.edu

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

□ CHALK & TALK	☑ STUD.	☑ WEB	☑ ONLINE
	ASSIGNMENTS	RESOURCES	CLASSES
☑ LCD/SMART	□ STUD.	□ ADD-ON	
BOARDS	SEMINARS	COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

☑ASSIGNMENTS	□ STUD.	☑ TESTS/MODEL	☑ UNIV.
	SEMINARS	EXAMS	EXAMINATION
□ STUD. LAB	□ STUD.	☐ MINI/MAJOR	□
PRACTICES	VIVA	PROJECTS	CERTIFICATIONS
□ ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

☑ ASSESSMENT OF COURSE OUTCOMES	☑ STUDENT FEEDBACK ON
(BY FEEDBACK, ONCE)	FACULTY (TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	□ OTHERS

Prepared by

Approved by

Swapna Davies, Shyama Sreekumar

Dr. Rithu James

COURSE PLAN

UNIT	DETAILS	HOURS					
	Microwave Radio Communications : Introduction, Advantages and						
I.1	Disadvantages, Analog vs digital microwave, frequency vs amplitude	1					
	modulation						
I.2	Frequency modulated microwave radio system, FM microwave radio repeaters	1					
13	Diversity, protection switching arrangements, FM microwave radio stations,	2					
1.5	microwave repeater station, line of sight path characteristics	2					
	Digital TV: Digitized Video, Source coding of Digitized Video, Compression						
11.1	of Frames, DCT based (JPED), Compression of Moving Pictures (MPEG). Basic blocks of MPEG2 and MPE4,Digital Video Broadcasting (DVB)						
	Basic blocks of MPEG2 and MPE4, Digital Video Broadcasting (DVB)						
11.2	Modulation: QAM (DVB-S, DVB-C), OFDM for Terrestrial Digital TV	4					
11.2	(DVB - I). Reception of Digital IV Signals (Cable, Satellite and terrestrial).	4					
11.2	Digital I v over IP, Digital terrestriat I v for mobile	2					
11.5	Display Technologies: basic working of Plasma, LCD and LED Displays	2					
III.1	Satellite Communication systems, introduction, Kepler's laws, orbits, orbital	2					
	Satallita sub systems. Antennas, Transponders, earth station technology. Link						
III.2	calculation	2					
	Satellite systems, GEO systems, non-GEO communication systems. Satellite						
III 3	Applications- Global Positioning System Very Small Aperture Terminal	3					
111.5	system. Direct to Home Satellite Systems	5					
	Evolution of mobile radio communications, paging systems, Cordless						
IV.1	telephone systems, comparison of various wireless systems	2					
IV.2	Introduction to Modern Wireless Communication Systems, Second generation						
	cellular networks, third generation wireless networks, fourth generation	1					
	wireless technologies						
IV.3	Wireless in local loop, wireless local area networks, Blue tooth and Personal						
	Area networks, Over view of WIMAX Technologies, architecture, spectrum	2					
	allocation						
V.1	Cellular concept, hand off strategies, Interference and system capacity: Cell						
	splitting, Sectoring, Repeaters, and Microcells.	2					
	Cellular System Design Fundamentals: Frequency Reuse, channel assignment	3					
	arade off service, improving coverage and capacity						
V 2	Wireless propagation mechanism free space propagation model ground						
v.2	reflection model, knife edge diffraction model, path loss prediction in hilly						
	terrain, introduction to fading and diversity techniques, Introduction to MIMO	3					
	system						
VI.1	Introduction to Multiple Access, FDMA, TDMA, Spread Spectrum multiple	2					
	Access, space division multiple access, CDMA, OFDM	2					
VI.2	Wireless Networking, Difference between wireless and fixed telephone						
	networks, development of wireless networks, fixed network transmission	2					
	hierarchy, traffic routing in wireless networks, wireless data services, Wireless	-					
111.0	standards,						
VI.3	GSM system architecture, radio link aspects, network aspects	1					
VI.4	Introduction to new data services like High Speed Circuit Switched Data						
	(HSCSD), General Packet Radio Service (GPRS), Digital Enhanced Cordless	_					
	Telecommunications (DECT), Enhanced Data Rate for Global Evolution (EDCE). Litro wideband systems (LW/D), Duch To Tally (DTT) to built and	5					
	(EDGE), Ultra wideband systems (UWB), Push 10 Talk (PTT) technology, Mobile ID						

SAMPLE QUESTION

Module 1

1. With a block schematic explain microwave radio IF repeater station.

2. Explain hot standby protection switching arrangement of a microwave radio system.

3. How the diversity is enhancing the performance of radio wave propagation?

4. Illustrate with figure a "Microwave radio communications link". List the advantages and disadvantages of Microwave Radio Communication.

5. Explain the need for a microwave repeater. Describe a baseband repeater with suitable diagram.

6. Explain the following with diagram (i) Space Diversity (ii) Frequency Diversity.

Module 2

- 1. With a block diagram explain the DVB-T system.
- 2. How the images compressed with the help of Discrete Cosine Transform (DCT)? Explain.
- 3. Compare LED and LCD display systems.
- 4. Differentiate entropy coding with transform coding.
- 5. What are Group of Pictures? Discuss the features of each.
- 6. With a block diagram explain MPEG2 system.

Module 3

1. Explain the effect of Non-spherical shape of earth on a satellite orbit.

2. With the help of a block diagram briefly explain Satellite Transponder Subsystem.

3. A satellite TV signal occupies the full transponder bandwidth of 36 MHz and it must provide a C/N ratio at the destination earth station of 22 dB. Given that the total transmission loss is 210 dB and the destination earth station G/T ratio is 31 dB/K. Calculate the satellite EIRP required. Given value k in dB is - 228.6 dB.

4. Briefly describe about global positioning satellite system.

5. Derive the expression of orbital velocity for the circular orbit.

6. Summarize Kepler's laws.

Department of EC, RSET

Module 4

- 1. With the help of figure, describe WLL technology and its advantages
- 2. What are the different versions of WLAN?
- 3. Compare 1G, 2G, 3G & 4G systems.
- 4. Mention the features of Bluetooth.
- 5. State the differences between TDD & FDD in cellular communications.
- 6. List out the features of UMTS.

Module 5

1, What is meant by small-scale fading? List out the factors influencing small-scale fading.

2. With necessary diagrams explain the technique 'Hand off '. Describe the different Hand off strategies

- 3. Describe knife edge diffraction model.
- 4. Write a short note on MIMO systems
- 5. Explain how the frequency reuse concept is significant in cellular system.
- 6. Derive the expression for path loss of Two Ray Ground Reflection model

Module 6

- 1. Explain in detail about the characteristics and network architecture of GPRS.
- 2. Give the concepts of Push To Talk (PTT) technology
- 3. Explain the OFDM implementation of multicarrier modulation with necessary diagrams.
- 4. Describe the traffic routing in wireless networks.
- 5. Explain Digital Enhanced Cordless Telecommunications (DECT) data service.
- 6. Discuss in detail about GSM system architecture.

EC 468

SECURE COMMUNICATION

COURSE INFORMATION SHEET

PROGRAMME: ELECTI COMMUNICATION ENG	RONICS AND GINEERING	DEGREE: B. TECH UNIVERSITY: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY					
COURSE: SECURE COM	MUNICATION	SEMESTER:	S8	CREDITS: 3			
COURSE CODE:							
EC468	REGULATION:	COURSE TYPE: ELECTIVE					
2016							
COURSE AREA/DOMAIN		CONTACT HOURS: 3 (L)					
COMMUNICATION		hours/week					
CORRESPONDING LAB	COURSE CODE (IF	LAB COURSE NAME:					
ANY): NIL		LAD COURSE MAME.					

SYLLABUS:

UNIT	DETAILS	HOURS						
I.1	Introduction on security, security goals and types of attacks: Passive attack, active attack, attacks on confidentiality, attacks on integrity and	5						
	availability, Security services and mechanisms.							
П.1	Modular arithmetic: Groups, Ring, Fields. The Euclidean algorithm,							
	Finite fields of the form GF(p)							
II.2 Polynomial arithmetic: Finite fields of the form GF (2n).								
III.1	Symmetric Ciphers, Symmetric Cipher Model	3						
III.2	Substitution Techniques, Caesar Cipher, Mono alphabetic Cipher, Play fair cipher, Hill cipher, Poly alphabetic Cipher, one time pad	4						
IV.1	Transposition techniques ,Block Ciphers, Data encryption Standards, DES Encryption, DES decryption	3						
IV.2	Differential and Linear Crypt analysis Advanced Encryption standard	2						
IV.3	The AES Cipher, substitute bytes transformation, Shift row transformation, Mix Column transformation.	2						
V .1	Public key cryptosystem, Application for Public key cryptosystem requirements	2						
V.2	RSA algorithm, Key management, Distribution of public key, public key certificates, Distribution of secret keys.	5						
VI.1	Intruders: Intrusion techniques, Intrusion detection, Statistical anomaly detection, Rule based intrusion detection, Distributed intrusion detection, Honey pot, Intrusion detection exchange format.	5						
VI.2	Password management: Password protection, password selection strategies.	2						
TOTAL HOURS								

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	Behrouz A. Forouzan, Cryptography and Network security Tata McGraw-Hill, 2008
T2	William Stallings, Cryptography and Network security: principles and practice", 2nd
	Edition, Prentice Hall of India, New Delhi, 2002

R1	David S. Dummit & Richard M Foote, Abstract Algebra, 2nd Edition, Wiley India
	Pvt. Ltd., 2008.
R2	Douglas A. Stinson, Cryptography, Theory and Practice, 2/e, Chapman & Hall, CRC
	Press Company, Washington, 2005.
R3	Lawrence C. Washington, Elliptic Curves: Theory and Cryptography, Chapman &
	Hall, CRC Press Company, Washington, 2008.
R4	N. Koeblitz: A course in Number theory and Cryptography, 2008
R5	Thomas Koshy: Elementary Number Theory with Applications, 2/e, Academic
	Press, 2007
R6	Tyagi and Yadav, Cryptography and network security, Dhanpatrai, 2012

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
-	NIL		

COURSE OBJECTIVES:

1 To impart the students about the theory and technology behind the secure communication

COURSE OUTCOMES:

SL. NO.	DESCRIPTION	Blooms' Taxonomy Level
C0.1	The students will have an understanding about security goals, services and mechanisms.	Understand (level 2)
C0.2	The students will have thorough understanding about Algebraic structures and Modular Arithmetic and their application in encryption-decryption process.	Understand & Apply (level 2,3)
C0.3	The student will have good understanding of encryption and cryptanalysis of substitution ciphers.	Understand & Apply (level 2,3)
C0.4	The student will have a detailed understanding of DES and AES encryption standards and their application.	Understand & Apply (level 2,3)
C0.5	The student will have a good understanding about the Public Key Cryptosystem.	Understand (level 2)
C0.6	Students will be able to classify and differentiate different intrusion techniques	Understand (level 2)

CO-PO AND CO-PSO MAPPING

	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	P O 10	P 0 11	P 0 12	PS O 1	PS O 2	PS O 3
CO 1	2														
CO 2	2	2				1									

CO 2	2	2		1			2		2
5									
CO	2	2		2			2	2	2
4									
СО	2					1			
5									
CO	2					1	2		
6									

JUSTIFATIONS FOR CO-PO MAPPING

MAPPING	LOW/MEDIUM/HIGH	JUSTIFICATION
CO1-PO1	М	Understanding about security goals, services and mechanisms requires knowledge of science and engineering fundamentals.
CO2-PO1	М	Modular Arithmetic and their application in encryption-decryption process requires knowledge of science, mathematics and engineering fundamentals
CO2-PO2	М	Modular arithmetic is used to check and design fields.
CO2-PO6	L	Fields forms the base for cryptographic applications which are used for secure communication.
CO3-PO1	М	Understanding of encryption and cryptanalysis of substitution ciphers requires knowledge of science, mathematics and engineering fundamentals
CO3-PO2	М	Analyzing different encryption and cryptanalysis of substitution ciphers.
CO3-PO6	L	Symmetric encryption ensures secure communication of data. Cryptography is designed to meet the needs of society in security context.
CO3-PO12	М	Encryption Algorithms should be upgraded by analyzing the current societal issues.
CO4-PO1	М	Requires mathematical basics to construct DES and AES encryption standards and their application
CO4-PO2	М	Analyzing AES, DES and their advanced versions for secure communication
CO4-PO6	М	DES & AES algorithms provide safety by securing the information shared. Cryptography is designed to meet the needs of society in security context.
CO4-PO12	М	Encryption Algorithms should be upgraded by analyzing the current societal issues.
CO5-PO1	М	Understanding about the Public Key Cryptosystem requires knowledge of science and engineering fundamentals.
CO5-PO10	L	Seminars & Group discussions
CO6-PO1	М	Ensuring security for data in all fields of life. Statistical analysis to identify the intrusion types
CO6-PO10	L	Seminars & Group discussions

CO6-PO12	М	Algorithms should be upgraded by analyzing the current societal issues, Intrusion detection can benefit
		the society.

JUSTIFATIONS FOR CO-PSO MAPPING

MAPPING	LOW/MEDIUM/HIGH	JUSTIFICATION
		Development of more advanced encryption
CO3-PSO3	М	algorithms are required to ensure security of data in
		present scenario.
CO4_PSO1	М	Can design & develop secure systems by
04-1501	111	incorporating DES & AES.
		Encryption algorithms need to be upgraded for
		sustainable developments. Development
CO4-PSO3	Μ	of more advanced encryption algorithms are
		required to ensure security of data in present
		scenario.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SL NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Euler totient function	Video Lectur e	1	-
2	Simplified AES	Video Lecture	1	-

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SL NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
	Triple Data Encryption	T a stanus s		
1	algorithm)	Lectures	1	-
2	Blowfish Algorithm.	Video	1 2 12	_
2		lectures	1,2,12	_
3	Light Weight Cryptography	Video	12612	2
5	for IOT Devices.	lectures	1,2,0,12	5

WEB SOURCE REFERENCES:

1	http://www.cs.auckland.ac.nz/~pgut001/cryptlib/index.html
2	http://people.csail.mit.edu/rivest/crypto-security.html
3	http://www.iacr.org/jofc/
4	http://www.secrypt.icete.org/
5	https://www.iacr.org/events/

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

□ CHALK & TALK	☑ STUD. ASSIGNMENTS	☑ WEB RESOURCES	☑ ONLINE CLASSES
LCD/SMART	☑ STUD.	□ ADD-ON	
BOARDS	SEMINARS	COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

☑ASSIGNMENTS	☑ STUD.	☑ TESTS/MODEL	☑ UNIV.
	SEMINARS	EXAMS	EXAMINATION
□ STUD. LAB	□ STUD.	☐ MINI/MAJOR	□
PRACTICES	VIVA	PROJECTS	CERTIFICATIONS
□ ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

☑ ASSESSMENT OF COURSE OUTCOMES	☑ STUDENT FEEDBACK ON
(BY FEEDBACK, ONCE)	FACULTY (TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	□ OTHERS

Prepared by

Approved by

Ms. Neethu Radha Gopan Ms. Aarathi Sankar **DEC**) Dr. Rithu James (HOD,

(Faculties in Charge)

UNIT	DETAILS	HOURS	
	Introduction on security, security goals and types of attacks:		
I.1	Passive attack, active attack, attacks on confidentiality, attacks on	5	
	integrity and availability, Security services and mechanisms.		
П 1	Modular arithmetic: Groups, Ring, Fields. The Euclidean	1	
11.1	algorithm, Finite fields of the form GF(p)	-	
II.2	Polynomial arithmetic: Finite fields of the form GF (2n).	4	
III.1	Symmetric Ciphers, Symmetric Cipher Model	3	
ш э	Substitution Techniques, Caesar Cipher, Mono alphabetic Cipher,	1	
111.2	Play fair cipher, Hill cipher, Poly alphabetic Cipher, one time pad	4	
IV 1	Transposition techniques ,Block Ciphers, Data encryption	2	
11.1	Standards, DES Encryption, DES decryption	5	
IV 2	Differential and Linear Crypt analysis Advanced Encryption	2	
1 V.2	standard	Z	
IV 2	The AES Cipher, substitute bytes transformation, Shift row	2	
10.5	transformation, Mix Column transformation.	Z	
V 1	Public key cryptosystem, Application for Public key	2	
۷.1	cryptosystem requirements	Δ	
V 2	RSA algorithm, Key management, Distribution of public key,	5	
V.2	public key certificates, Distribution of secret keys.	5	
	Intruders: Intrusion techniques, Intrusion detection, Statistical		
VI 1	anomaly detection, Rule based intrusion detection, Distributed	5	
V 1. 1	intrusion detection, Honey pot, Intrusion detection exchange	5	
	format.		
VI 2	Password management: Password protection, password selection	2	
V 1.2	strategies.	Δ	
TOTAL	41		
HOURS	T		

COURSE PLAN

SAMPLE QUESTION

Module 1

1. Describe any five security mechanisms.

2. Differentiate between active and passive attacks

3. Explain the security attacks on integrity with examples.

4. Discuss the three security goals.

5. Find a solution for $6x + 1 \equiv 2 \mod 7$

6. Give different types of attacks in a cryptosystem.

7. Discuss attacks on integrity. How it can be prevented?

8. Discuss attacks on availability.

Module 2

1. It is told in arithmetic that the remainder of an integer divided by 4 is the same as the remainder of division of the two rightmost digits by 4. Use the properties of mod operator to prove this claim.

2. Differentiate between group, ring, abelian group and field with examples.

3. Define the inverse and identity elements for any operation in a group.

Module 3

1. Explain symmetric cipher model with mathematical description

2. Discuss the properties of an ideal cryptographic system.

3. Encrypt the plaintext "come to the window" with the keyword "KEYWORD" using playfair cipher technique.

4. Encrypt the plaintext "ACT" with the keyword "GYBNQKURP" using hill cipher encryption technique

Module 4

1. Differentiate between differential and linear cryptanalysis.

2. Give the basic permutations and substitutions in DES.

3. Explain in detail about the Add round key stage and key expansion of AES encryption standard.

4. Explain the concept of Rotor Machines.

5. Discuss four transformations used in Advanced Encryption Standard.

6. With the help of a block diagram, explain the process of key generation in DES.

Module 5

1. Explain RSA algorithm with parameters p = 3, q = 11, e = 7 and M = 5.

2. Explain Diffie- Hellman public key cryptosystem with an example.

3. What is the difference between symmetric encryption and asymmetric encryption?

4. Using Key analogy, explain Public Key Cryptosystem.

5. Give applications of PKCS.

6. Explain PKDS with PKCS. Give comparison.

Module 6

1. Give the requirements of a secure password.

2. What are the advantages of Honey pot?

3. How does distributed intrusion detection work?

4. Write note on password protection.

5. Discuss the techniques for intrusion detection.

6. What is a 'salt'? What is its purpose in password protection?

7. Explain briefly about the four password selection strategies used.

8. Discuss intrusion detection exchange format.

Department of EC, RSET

EC 466

CYBER SECURITY

COURSE INFORMATION SHEET

PROGRAMME: ELECTRONICS AND COMMUNICATION ENGINEERING	DEGREE: B. TECH UNIVERSITY: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	
COURSE: CYBER SECURITY	SEMESTER: S8 CREDITS: 3	
COURSE CODE: EC404 REGULATION: 2015	COURSE TYPE: Elective	
COURSE AREA/DOMAIN:	CONTACT HOURS: 3+0 (L+T)	
COMMUNICATION	nours/week	
CORRESPONDING LAB COURSE CODE (IF ANY): NIL	LAB COURSE NAME:NIL	

SYLLABUS:

UNIT	DETAILS	HOURS
I	Introduction to Vulnerability Scanning Overview of vulnerability scanning, Open Port / Service Identification, Banner / Version Check, Traffic Probe, Vulnerability Probe, Vulnerability Examples, OpenVAS, Metasploit.	7
п	Network Vulnerability Scanning Networks Vulnerability Scanning - Netcat, Socat, understanding Port and Services tools - Datapipe, Fpipe, WinRelay, Network Reconnaissance – Nmap, THC-Amap and System tools, Network Sniffers and Injection tools – Tcpdump and Windump, Wireshark, Ettercap, Hping, Kismet	7
ш	Network Defense tools Firewalls and Packet Filters: Firewall Basics, Packet Filter Vs Firewall, How a Firewall Protects a Network, Packet Characteristic to Filter, Stateless Vs Stateful Firewalls, Network Address Translation (NAT) and Port Forwarding, the basic of Virtual Private Networks, Linux Firewall, Windows Firewall, Snort: Introduction Detection	8
IV	Web Application Tools Scanning for web vulnerabilities tools: Nikto, W3af, HTTP utilities - Curl, OpenSSL and Stunnel, Application Inspection tools – Zed Attack Proxy, Sqlmap. DVWA, Webgoat, Password Cracking and Brute-Force Tools – John the Ripper, L0htcrack, Pwdump, HTCHydra	6
V	Introduction to Cyber Crime and law Cyber Crimes, Types of Cybercrime, Hacking, Attack vectors, Cyberspace and Criminal Behavior, Clarification of Terms, Traditional Problems Associated with Computer Crime, Introduction to Incident Response, Digital Forensics, Computer Language, Network Language, Realms of the Cyber world, A Brief History of the Internet, Recognizing and Defining Computer Crime,	8

	Contemporary Crimes, Computers as Targets, Contaminants and Destruction of Data, Indian IT ACT 2000.	
VI	Introduction to Cyber Crime Investigation Firewalls and Packet Filters, password Cracking, Keyloggers and Spyware, Virus and Warms, Trojan and backdoors, Steganography, DOS and DDOS attack, SQL injection, Buffer Overflow, Attack on wireless Networks	6
TOTA	L HOURS	24

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	Mike Shema , Anti-Hacker Tool Kit, Mc Graw Hill
T2	Nina Godbole and Sunit Belpure, Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Wiley
R 1	Nina Godbole and Sunit Belpure, Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Wiley
R2	Forouzan, Data Communication and Networking(Glogal Edition) 5/e, McGraw Hill Education India, 2013
R3	Forouzan, TCP/IP Protocol Suite 4e, McGraw Hill Education India, 2010

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
EC407	Computer Communication	Basic knowledge of computer communication	VII

COURSE OBJECTIVES:

1	To familiarize various types of vulnerabilities
2	To study the tools used in vulnerability scanning
3	To familiarize various types of cyber-attacks and cyber-crimes
4	To give an overview of the cyber laws
5	To study the defensive techniques against these attack

COURSE OUTCOMES:

SL. NO.	DESCRIPTION	Blooms' Taxonomy Level
C0.1	Students will be able to <u>understand</u> the various types of vulnerabilities and will be able to <u>analyze</u> vulnerabilities	Understand and Analyze (level 2, 4)
C0.2	Students will be able to <u>understand</u> the tools used in vulnerability scanning and can <u>identify</u> the vulnerabilities that may occur	Understand (level 2)
С0.3	Students will be able to <i>identify</i> various types of cyber- attacks and cyber-crimes	Understand (level 2)
C0.4	Students will be able to <u>understand</u> different cyber laws	Understand (level 2)
C0.5	Students will be able to <u>understand</u> the defensive techniques and will be able to <u>select</u> appropriate techniques against these attacks	Apply (level 3)

CO-PO AND CO-PSO MAPPING

	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	PS	PS	PS
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	3	1					1			2	1	2	1
CO 2	3	3	3	1		1			1			1	1	2	1
CO 3	3	3	3	1		1			1			1	2	1	1
CO 4	3	3	3	1					1			1	1	1	1
CO 5	3	3	3	1											

JUSTIFATIONS FOR CO-PO MAPPING

MAPPING	LOW/MEDIUM/HIGH	JUSTIFICATION
CO1-PO1	Н	Cyber security systems design involves solving complex engineering problems

CO1-PO2	Н	Principles of mathematics and engineering sciences are used in various aspects of Cyber security systems design
CO1-PO3	Н	Using the knowledge of Cyber security systems design, we can design and develop solutions for complex engineering problems
CO1-PO4	L	Cyber security systems design knowledge can be used to design and conduct experiments to provide valid conclusions
CO1-PO9	L	Expertise developed, which will enable the student to become a productive member of a design team
CO1-PO12	М	The student will become aware of the need for lifelong learning and the continued upgrading of technical knowledge
CO2-PO1	Н	Cyber security systems Architecture involves solving complex engineering problems
CO2-PO2	н	Principles of mathematics and engineering sciences are used in various aspects of Cyber security systems Architecture
СО2-РО3	Н	Knowledge of Cyber security systemsarchitecture can be used to design and develop solutions for complex engineering problems
CO2-PO4	L	Cyber security systems Architecture knowledge can be used to design and conduct experiments to provide valid conclusions
CO2-PO6	L	Knowledge of Cyber security systemsArchitecture will help understand issues and societal problems related to cybercrimes and computer hacking
СО2-РО9	L	Expertise developed, which will enable the student to become a productive member of a design team
CO2-PO12	L	The student will become aware of the need for lifelong learning and the continued upgrading of technical knowledge
СО3-РО1	Н	Cyber security systemsdesign involves solving complex engineering problems
СОЗ-РО2	Н	Principles of mathematics and engineering sciences are used in various aspects of processor
СОЗ-РОЗ	н	Knowledge of Cyber security systemsarchitecture can be used to design and develop solutions for complex engineering problems

СО3-РО4	L	Cyber security systems Architecture knowledge can be used to design and conduct experiments to provide valid conclusions
CO3-PO6	L	Knowledge of Cyber security systemsArchitecture will help understand issues and societal problems related to cybercrimes and computer hacking
СО3-РО9	L	Expertise developed, which will enable the student to become a productive member of a design team
CO3-PO12	L	The student will become aware of the need for lifelong learning and the continued upgrading of technical knowledge
CO4-PO1	Н	Cyber security systemsdesign involves solving complex engineering problems
CO4-PO2	Н	Principles of mathematics and engineering sciences are used in various aspects of Cyber security systemsArchitecture
CO4-PO3	Н	Knowledge of Cyber security systemsarchitecture can be used to design and develop solutions for complex engineering problems
CO4-PO4	L	Cyber security systems Architecture knowledge can be used to design and conduct experiments to provide valid conclusions
CO4-PO9	L	Expertise developed, which will enable the student to become a productive member of a design team
CO4-PO12	М	The student will become aware of the need for lifelong learning and the continued upgrading of technical knowledge
CO5-PO1	Н	Performance analysis involves solving complex engineering problems
CO5-PO2	Н	Performance analysis involves principles of mathematics and engineering
CO5-PO3	Н	Performance Analyis can be used to design and develop solutions for complex engineering problems
CO5-PO4	Н	Performance analysis skills can be used to design and conduct experiments to provide valid conclusions
CO1- PSO2	M	Students can code, simulate and test functional blocks of various scanning tools
CO1- PSO3	L	Recognize the importance of continuous learning

CO2- PSO1	L	Complete or partial design of cyber systems with tools
CO2- PSO2	М	Students can code, simulate and test functional blocks of cyber systems with tools
CO2- PSO3	L	Recognize the importance of continuous learning
CO3- PSO1	М	Usage and also development of various tools involves programming
CO3- PSO2	L	Usage and also development of various tools involves programming
CO3- PSO3	L	Recognize the importance of continuous learning
CO4- PSO1	L	IO and memory designs can be used in the systems used for cyber communication
CO4- PSO2	L	IO and Memory designs can simulated and analyzed using cyber communication
CO4- PSO3	L	Recognize the importance of continuous learning

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SL	DESCRIPTION	PROPOSED	RELEVANCE	RELEVANCE
NO		ACTIONS	WITH POs	WITH PSOs
1	Various scanning tools simulation	Tool discussion		

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SL	DESCRIPTION	PROPOSED	RELEVANCE WITH	RELEVANCE WITH
NO		ACTIONS	POs	PSOs
1	Various scanning	Lectures	1	-

WEB SOURCE REFERENCES:

1 http://nptel.iitm.ac.in

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

🗆 CHALK & TALK	☑ STUD.	☑ WEB	☑ ONLINE
	ASSIGNMENTS	RESOURCES	CLASSES
☑ LCD/SMART BOARDS	□ STUD. SEMINARS	□ ADD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

ØASSIGNMENTS	□ STUD. SEMINARS	☑ TESTS/MODEL EXAMS	☑ UNIV. EXAMINATION
□ STUD. LAB PRACTICES	🗆 STUD. VIVA	☐ MINI/MAJOR PROJECTS	□ CERTIFICATIONS
□ ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

☑ ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	☑ STUDENT FEEDBACK ON FACULTY (TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	□ OTHERS

Prepared by

Approved by Dr. Rithu James (HOD,

ECE)

Mariya Vincent

(Faculties in Charge)

COURSE PLAN

UNIT	DETAILS	HOURS			
Ι	Introduction to Vulnerability Scanning Overview of vulnerability scanning, Open Port / Service Identification, Banner / Version Check, Traffic Probe, Vulnerability Probe, Vulnerability Examples, OpenVAS, Metasploit.	7			
п	Network Vulnerability Scanning Networks Vulnerability Scanning - Netcat, Socat, understanding Port and Services tools - Datapipe, Fpipe, WinRelay, Network Reconnaissance – Nmap, THC-Amap and System tools, Network Sniffers and Injection tools – Tcpdump and Windump, Wireshark, Ettercap, Hping, Kismet	7			
III	Network Defense tools Firewalls and Packet Filters: Firewall Basics, Packet Filter Vs Firewall, How a Firewall Protects a Network, Packet Characteristic to Filter, Stateless Vs Stateful Firewalls, Network Address Translation (NAT) and Port Forwarding, the basic of Virtual Private Networks, Linux Firewall, Windows Firewall, Snort: Introduction Detection	8			
IV	Web Application Tools Scanning for web vulnerabilities tools: Nikto, W3af, HTTP utilities - Curl, OpenSSL and Stunnel, Application Inspection tools – Zed Attack Proxy, Sqlmap. DVWA, Webgoat, Password Cracking and Brute- Force Tools – John the Ripper, L0htcrack, Pwdump, HTCHydra	6			
V	Introduction to Cyber Crime and law Cyber Crimes, Types of Cybercrime, Hacking, Attack vectors, Cyberspace and Criminal Behavior, Clarification of Terms, Traditional Problems Associated with Computer Crime, Introduction to Incident Response, Digital Forensics, Computer Language, Network Language, Realms of the Cyber world, A Brief History of the Internet, Recognizing and Defining Computer Crime, Contemporary Crimes, Computers as Targets, Contaminants and Destruction of Data, Indian IT ACT 2000.	8			
VI	Introduction to Cyber Crime Investigation Firewalls and Packet Filters, password Cracking, Keyloggers and Spyware, Virus and Warms, Trojan and backdoors, Steganography, DOS and DDOS attack, SQL injection, Buffer Overflow, Attack on wireless Networks	6			
TOTAL HOURS					

SAMPLE QUESTION

Module 1

- 1. What do you mean by 'vulnerability scanner'? Draw and explain its architecture.
- 2. Describe the term Banner/Version check.
- **3.** Explain how Metasploit helps to target a system and helps an attacker tocompromise a system?

Module 2

- 1. Describe Socat as a network vulnerability scanning tool?
- 2. Explain the concept of Network Reconnaissance and describe any tool that support it
- 3. Explain the role of cygwin in Netcat.
- 4. List the features of NETCAT and SOCAT.
- 5. Explain the working of WinRelay.

Module 3

- 1. What do you understand by HTTP Utilities? Describe a description on OpenSSL and Curl.
- 2. Explain the concepts of password cracking? What all measures should be taken to protect our password?
- 3. What do you understand by sqlmap? Explain the role of Webgoat in protecting web applications.
- 4. What do you mean by Brute-Force Attack? Explain L0htcrack tool that assist in Brute-Force Attacks. (2+2)
- 5. Describe W3af as a tool for scanning web vulnerabilities.

Module 4

- 1. Explain the concept of NAT.
- 2. Write short note on Virtual Private Networks.
- 3. Describe the packet characteristics that need to be followed by packet filters and firewall.

Module 5

- 1. Explain the architecture of Firewall. What are the various characteristics of Firewall?
- 2. "Understanding and implementing Incident Response can reduce the risk of cyber attacks." Explain
- 3. What do you understand by DOS and DDOS attacks?
- 4. What do you understand by the term "Steganography"?

Module 6

- 1. Explain Indian IT ACT 2000.
- 2. Explain problems associated with computer crime.
- 3. What are keyloggers? Differentiate between hardware and software keyloggers
- 4. Explain what all attacks occur on wireless networks.

EC 492

PROJECT

COURSE INFORMATION SHEET

PROGRAMME: UG PROGRAMME IN	DEGREE: BTECH				
COMMUNICATION ENGINEERING					
COURSE: PROJECT	SEMESTER: VIII	CREDITS:			
		6			
COURSE CODE: EC 492	REGULATION:	COURSE TYPE: CORE			
2015					
COURSE AREA/DOMAIN: ELECTRO	NICS AND	CONTACT HOURS:	18		
COMMUNICATION	hours/Week.				
CORRESPONDING LAB COURSE CO	LAB COURSE NAM	E:			

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	30%-50% Project Work	10
II	50%-75% Project Work	10
III	75%-100% Project Work	10
IV	Evaluation - 100% Project Work	10
V	Report submission	6
	TOTAL HOURS	46

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
EC202	Signals &Systems	Basics of signals and systems	IV
EC207	Logic Design Circuit	Basics of Logical design	IV
EC208	Analog Communication	Basics of Analog Communication	IV
	Engineering		
EC302	EC302 Digital Communication	Basics of Digital Communication	VI
EC403	Microwave & Radar Engineering	Basics of MW devices and Radar	VII
		systems	

COURSE OBJECTIVES:

1	To apply engineering knowledge in practical problem solving
2	To foster innovation in design of products, processes or systems
3	To develop creative thinking in finding viable solutions to engineering problems

COURSE OUTCOMES:

S	DESCRIPTION
NO	
1	Think innovatively on the development of components, products, processes or technologies in the engineering field
2	Apply knowledge gained in solving real life engineering problems

CO-PO-PSO MAPPING:

	Р	PO	Р	P01	Р	PSO	PSO	PSO							
	0	2	3	4	5	6	7	8	9	0	1	0	1	2	3
	1									1		12			
										0					
492.		3	3	2	3				2	2	2		3		3
1															

492.	3	3		2	1	2		2	3	
2										

JUSTIFICATIONS FOR CO-PO MAPPING

Mapping	LOW/MEDIUM/HIGH	Justification
C01-	Н	Projects help the students to think innovatively and
P02		define a problem. They perform problem analysis and
		bring up solutions using the fundamentals they have
		studied.
C01-	Н	The students propose solutions to the problem they
PO3		have identified in a recent research area of their
		interest. They design/develop solutions using
		software and hardware which caters to the needs of
		the society.
C01-	М	The students conduct analysis of their results with the
P04		existing ones and based on their interpretations
		provide valid conclusions as well as future work in
004		the area.
C01-	H	The students study and make use of modern tools
P05		(software) to develop the solutions to complex
<u> </u>	М	problems.
	IvI	The students develop the solution of product after
P09		fosters individual and team work
C01	М	The students present their preject work during every
D10	IVI	stages of their work to the guide and other papel
FIU		mombors. They also write reports which explain the
		project. This enhances their communication and
		comprehension skills
C01-	М	The students are able to apply the management
P11		principles when they are working as a team. They also
		become acquainted to work adhering to timelines as
		well as multidisciplinary environment.
C01-	Н	The students are able to analyze and design solutions
PSO1		for the problems they have identified for their project
		using the principles of computer science.
CO1-	Н	The students are able to propose and implement
PSO3		innovative solutions to complex problems which
		helps to develop research and entrepreneur ship
		skills.
CO2	Н	The students are able to apply the knowledge of all the
P01		fundamental courses they have studied in their project
		implementations. This also helps them to understand
		the practical aspects of the theory that they have
		studied in these courses.
C02-	Н	The students are able to design and develop solutions
PO3		for the problem defined. The solution will cater to the
		needs of the society as well as environment.

CO2- P06	M	The students will be able to apply the reasoning to the issues that they see in the society as they have used their logic and skills in the design and analysis of the problem defined. They will also be aware of the responsibilities of a professional engineer
C02- P07	L	The students develop and design the solution taking into consideration the impact of their solution to society and environment.
CO2- PO8	М	The students working as a team in a project are able to develop the professional ethics that they need during their professional career.
CO2- PO12	M	The students will be able to utilize their skill of analyzing a context or a problem developed as part of their project in a broader sense during new technology developments which helps in solving real world problems.
CO2- PSO2	Н	The students are able to enhance their programming skills, apply recent principles of project development and deliver products/ hardware needed. This helps them to solve real world problems in their future professional career.

WEB SOURCE REFERENCES:

1www.ieexplorer.ieee.org2www.springer.com

3 www.hindawi.com

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

□CHALK & TALK	□STUD. ASSIGNMENT			WEB RESOURCES		
LCD/SMART BOARDS		STUD. SEMINARS	[ADD-ON COURSES		

ASSESSMENT METHODOLOGIES-DIRECT [Append details of assessment methodologies actually employed (including design and analysis assessment) in spreadsheet format after the completion of each semester]

□ ASSIGNMENTS		STUD. SEMINARS	TESTS/MODEL EXAMS	□UNIV. EXAMINATION
□ STUD. LAB PRACTICES		STUD. VIVA	MINI/MAJOR PROJECTS	□ CERTIFICATIONS
□ ADD-ON COURSES	D-ON COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	STUDENT FEEDBACK ON FACULTY (TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	□ OTHERS

Prepared by by (Faculty) Preethi Bhaskaran James Bonifus P L Anoop Thomas Approved

(HOD) Dr Rithu

Department of Electronics and Communication Engineering

Guidelines for EC 451 Seminar & Project Prelimary & EC 492 Project

1. General Guidelines

- Each project group will typically comprise of 3 or 4 students from the same class.
- The seminar and project work will both be supervised by an allotted Project Guide.
- Seminar is considered to be the literature survey for the Project. Students are expected to select seminar topics related to their chosen project area.
- Each student is instructed to refer a minimum of 3 SCI-Indexed Journal Papers and a minimum of 4 Conference papers for the Seminar & Project work.
- As a part of the Project Preliminary work, each Project group is expected to demonstrate a part of their Project, as defined by the Project Guide. The work must include design/research content.
- The evaluation of EC 451 Seminar & Project Preliminary presentations will be conducted in two phases:
 - <u>Phase-I:</u> Each student will be given 20 minutes for the Seminar Presentation(15 minutes) + Q & A session(5 minutes)
 - <u>Phase-II:</u> Each Project group will be provided 30 minutes to present the Project Preliminary work. Presentation(20 minutes) + Q & A session(10 minutes)

2. General Guidelines for guides

- Guides can change /modify the topics proposed by the students.
- Guides must ensure that the final proposed work can be properly divided in to group members.
- After allocation weekly wise student- guide interaction is expecting and students must report the interaction through project diary (currently soft copies).
- If the project contains an interdisciplinary part guide can take support of co guides from other research groups/department.

3. **Student-Guide interaction**

a. <u>Project Diary</u>

Every student has to maintain a project diary in which he/she is expected to record the project activities. Department views this as an important exercise and so should be properly recorded and maintained till the end of the final year project. The project diary (College size note book minimum 200 pages) must include:

- Syllabus of the EC 451 & EC 492 courses.
- Instructions and schedule given in between the course.
- Print out of the seminar paper selected for seminar from the list of 7 to 10 papers referred.
- List of referred papers.
- Project schedule showing planned completion date for each major activity as well as actual date of completion of the activity.
- Daily/weekly record of work done and summary of interaction/discussions with Project Guide, duly signed by the Project Guide.

- Responsibilities of each member of the project team properly defined.
- Questions asked during the interim presentations and the answers.
- Difficulties/challenges faced, if any, and steps taken to overcome them.

The project diary should be updated and the signature of the Project Guide should be obtained every week.

Every student should carry the updated project diary to the project lab. The project diary should be shown to the members of the faculty-in-charge of the Project hour as and when demanded.

b) Time for interaction:

No Student is expected to miss regular classes for project discussions. It is also recommended that the students try to capitalize the time that they get soon after the completion of S7 final exams.

The respective Project Guide should be intimated in advance by the students about the date and time of presentation/review.

b. <u>Responsibilities</u>

The completion of the project is the responsibility of the group. The group should take the advice and directions from the Project Guide in achieving this.

4. **Project schedule**

The important dates for the different stages of project implementation will be provided. The individual schedule of their seminar/project has to be prepared by the students in consultation with the Project Guide.

5. **Project Quality Management**

The project work done by the student is one of the criteria for employment in good companies. This makes it imperative for the department to make sure about the quality of the work being carried out. The project work carried out should be presentable in front of a technically competent audience.

6. Seminar/Project Report Writing

- The Project Diary should be referred to while preparing the Seminar/Project Report.
- Seminar/Project Report should be prepared in LaTeX.
- The standard format of Report will be made available to the students which should be accurately followed.

- Writing of the report should be done with the involvement of each member of the group and the Project Guide and it should be an individual report for both Seminar/Project.
- It is good to start writing rough reports early during the project phase. These rough reports may be submitted to the Project Guide for correction. This will save time and effort later when the semester is about to end and time becomes very crucial.
- No final copy of the report will be signed by the Project Guide until he/she is convinced of the originality of the report and that the corrections recommended by him/her have been carried out. The responsibility of this will solely lie with every member of the Project group.

7. **Paper presentation**

- The department has decided to make technical paper writing compulsory for all Project Groups.
- This will also help the students to get an edge over other students during interviews.
- The papers will be compiled and kept in the department as record / for future enhancements.
- Include the name of guides and co-guides and acknowledge if any external support.