

COURSE HAND-OUT

B.TECH. - SEMESTER III

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

RAJAGIRI SCHOOL OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING (EC), RSET

VISION

TO EVOLVE INTO A CENTRE OF EXCELLENCE IN ELECTRONICS AND COMMUNICATION ENGINEERING, MOULDING PROFESSIONALS HAVING INQUISITIVE, INNOVATIVE AND CREATIVE MINDS WITH SOUND PRACTICAL SKILLS WHO CAN STRIVE FOR THE BETTERMENT OF MANKIND

MISSION

TO IMPART STATE-OF-THE-ART KNOWLEDGE TO STUDENTS IN ELECTRONICS AND COMMUNICATION ENGINEERING AND TO INCULCATE IN THEM A HIGH DEGREE OF SOCIAL CONSCIOUSNESS AND A SENSE OF HUMAN VALUES, THEREBY ENABLING THEM TO FACE CHALLENGES WITH COURAGE AND CONVICTION

B.TECH PROGRAMME

Program Outcomes (POs)

Engineering students will be able to

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, Engineering fundamentals, and Electronics and Communication Engineering to the solution of complex Engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and Engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations.
- 6. **The Engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional Engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional Engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the Engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex Engineering activities with the Engineering Community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life -long learning: Recognize the need for, and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change.

Program-Specific Outcomes (PSOs)

Engineering students will be able to:

- 1. Demonstrate their skills in designing, implementing and testing analogue and digital electronic circuits, including microprocessor systems, for signal processing, communication, networking, VLSI and embedded systems applications;
- 2. Apply their knowledge and skills to conduct experiments and develop applications using electronic design automation (EDA) tools;
- 3. Demonstrate a sense of professional ethics, recognize the importance of continued learning, and be able to carry out their professional and entrepreneurial responsibilities in electronics engineering field giving due consideration to environment protection and sustainability.

INDEX

1.	SEMESTER PLAN	6
2.	SCHEME	7
3.	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX	8
	COURSE INFORMATION SHEET	9
	COURSE PLAN	17
	SAMPLE QUESTIONS	19
4.	SOLID STATE DEVICES	22
	COURSE INFORMATION SHEET	23
	COURSE PLAN	27
	SAMPLE QUESTIONS	29
5.	LOGIC CIRCUIT DESIGN	32
	COURSE INFORMATION SHEET	33
	COURSE PLAN	40
	SAMPLE QUESTIONS	42
6.	NETWORK THEORY	45
	COURSE INFORMATION SHEET	46
	COURSE PLAN	51
	SAMPLE QUESTIONS	53
7.	SUSTAINABLE ENGINEERING	58
	COURSE INFORMATION SHEET	59
	COURSE PLAN	64
	SAMPLE QUESTIONS	65
8.	SCIENTIFIC COMPUTING LAB	67
	COURSE INFORMATION SHEET	68
	COURSE PLAN	75
9.	LOGIC DESIGN LAB	76
	COURSE INFORMATION SHEET	77
	COURSE PLAN	87

1. SEMESTER PLAN

		AUTONOMOU: SEMESTER PLAN – S3 ober 2021 – February 2	r ii	
October	November	December	January	February
21	1 9 30	ကို ကို အ	21 31 L	2 15
-	Module-1 (14 days) (15 days)	Module-3 (14 days)	Module-4 (15 days)	Module-5 (14 days)
Online classes begin	ottline classes begin	Test-1 Holidays	ļ	Test-2 Semesta ends

2. SCHEME

	Code	Subject	Η	ours/W	'eek	Credits
SLOT	Coue	Subject	L	Т	Р	Creans
A	100905/MA300A	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	3	1	0	4
В	100001/EC300B	SOLID STATE DEVICES	3	1	0	4
С	100001/EC300C	LOGIC CIRCUIT DESIGN	3	1	0	4
D	100001/EC300D	NETWORK THEORY	3	1	0	4
E	100908/EC900E	PROFESSIONAL ETHICS	2	0	0	2
F	100908/CO300F	SUSTAINABLE ENGINEERING	2	0	0	-
S	100001/EC322S	SCIENTIFIC COMPUTING LAB	0	0	3	2
Т	100001/EC322T	LOGIC DESIGN LAB	0	0	3	2

100905/MA300A

PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS

PROGRAMME: COMMON	DEGREE: BTECH
EXCEPT CS/IT	
PROGRAMME: EC	DEGREE: B. TECH
	UNIVERSITY: A P J ABDUL KALAM
	TECHNOLOGICAL UNIVERSITY
COURSE: PARTIAL	SEMESTER: III CREDITS: 4
DIFFERENTIAL	
EQUATIONSAND COMPLEX	
ANALYSIS	
COURSE CODE:	COURSE TYPE: CORE
100905_MA300A	
REGULATION: UG	
COURSE AREA/DOMAIN:	CONTACT HOURS: 3+1 (Tutorial)
ENGINEERING MATHEMATICS	hours/Week.

COURSE INFORMATION SHEET

SYLLABUS:

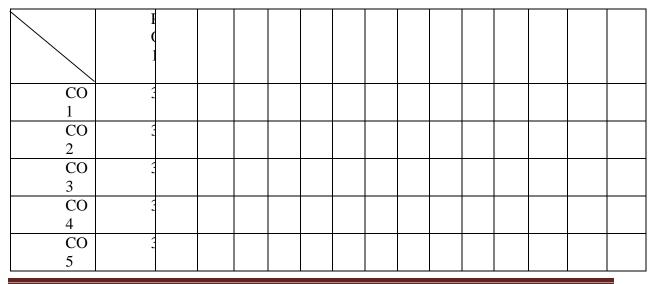
SYLI		
UNIT	DETAILS	HOURS
Ι	PARTIAL DIFFERENTIAL EQUATIONS	
	Partial differential equations, Formation of partial differential equations –elimination of arbitrary constants-elimination of arbitrary functions, Solutions of a partial differential equations, Equations solvable by direct integration, Linear equations of the first order- Lagrange'slinearequation,Non- linearequationsofthefirstorder-Charpit'smethod,Solution of equation by method of separation ofvariables.	8
П	APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS	
	One dimensional wave equation- vibrations of a stretched string, derivation, solution of the wave equation using method of separation of variables, D'Alembert's solution of the wave equation, One dimensional heat equation, derivation, solution of the heat equation	10
III	COMPLEX VARIABLE-DIFFERENTIATION	
	Complex function, limit, continuity, derivative, analytic functions, Cauchy-Riemann equations,harmonicfunctions,findingharmonicconjugate,Confo rmalmappings-mappings $w = z^2$, $w = e^z$, Linear fractional transformation $w = 1/z$. fixed points, Transformation $w=z \sin z$ z(From sections 17.1, 17.2 and 17.4 only mappings $w = z^2$, w	9

	$= e^{z}$, $w = 1$, $w = sinz$ and problems based on these transformation need to be discussed.	
IV	COMPLEX VARIABLE-INTEGRATION	
	Complex integration, Line integrals in the complex plane, Basic properties, First evaluation method-indefinite integration and substitution of limit, second evaluation method-use of a representationofapath,Contourintegrals,Cauchyintegraltheorem (withoutproof)onsimply connected domain, Cauchy integral theorem (without proof) on multiply connected domain CauchyIntegralformula(withoutproof),CauchyIntegralformulaf orderivativesofananalytic function, Taylor's series and Maclaurin series.,	9
V	COMPLEX VARIABLE-RESIDUE INTEGRATION Laurent's series(without proof), zeros of analytic functions, singularities, poles, removable singularities, essential singularities, Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral using residue theorem. Resudue integration of real integrals and rational $\int_{-\infty}^{\infty} f(x) dx$ functions. Improper integrals of the form $-\infty$.	9
TOTAL		45

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION	
	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers,	
T1	44 th Edition,2018.	
T2	T2 Erin Kreyszig: Advanced Engineering Mathematics, 10 th edition,	
	Wiley	
	Peter V. O'Neil, Advanced Engineering Mathematics, Cengage, 7th	
R1	Edition, 201	

COURSE PRE-REQUISITES:


C.CODE	COURSE NAME	DESCRIPTION	SEM
	A basic course in partial differentiation and complex numbers	To develop basic ideas on partial differentiation and Complex numbers etc.	

CO	COURSE OBJECTIVES:				
1	To equip the students with methods of solving partial diff. equation with				
1	first order				
2	To familiarize them with the concept of boundary value problems which				
2	have many applications in engineering like heat and wave equations				
2	To understand the basic theory of functions of a complex variable,				
3	calculus of complex valued functions and conformal transformations				

COURSE OUTCOMES:

SNO	DESCRIPTION	Bloom's		
		Taxonomy		
		Level		
CO	Identify the concept and the solution of partial	Remember		
1	differential equation.	(Level 1)		
CO	Analyze and solve one dimensional wave	Analyse		
2	equation and heat equation.	(Level 4)		
CO 3	Understand (Level 2)			
Evaluate complex integrals using Cauchy'sCO44understand the series expansion of analyticfunction		Evaluate (Level 5)		
COUnderstand the series expansion of complex5function about a singularity and apply residue5theorem to compute several kinds of realintegrals.		Apply (Level 3)		

CO-PO AND CO-PSO MAPPING

JUSTIFICATIONS FOR CO-PO MAPPING

MAP PING	LOW/M EDIUM/ HIGH	JUSTIFICATION
CO 1-	3	Fundamental knowledge in PDE will help to
PO 1		analyse the Engineering problems very easily
CO 1-	3	Basic knowledge for the solution of PDE will help
PO 2	_	to model various problems in engineering fields
CO 1-	3	Solution of PDE will help to simplify problems with
PO 3	_	high complexity in Engineering
CO 1- PO 4	3	Non-linear partial differential equations will help to design solutions to various complex engineering problems
CO 1-	2	Find the difference between complete integral and
PO 5		singular integral of a partial differential equation
CO 1-	1	Variable separable form will help to enrich the
PO 6		analysis of engineering problem
CO	2	Analyse the method of separation of variables for
1-PO	2	solving PDE
10 CO 1-		Mathada fan tha achatiana af DDE mill ainm a
	2	Methods for the solutions of PDE will give a
PO 12 CO 2-		thorough knowledge in the application problem
PO 1	3	Will able to analyse various methods of solutions of
CO 2-		boundary value problemsWill able to analyse various methods of solutions of
PO 2	3	initial value problems
CO 2-		_
PO 3	3	Analyse one dimensional wave equation
CO 2-	2	
PO 4	3	Analyse one dimensional heat equation
CO 2-	2	Analyse D-Alembert's solution of wave equation
PO 5	-	
CO 2-	1	Analyse Fourier solution of heat equation
PO 6		
CO		
2-PO	2	Apply the concept of above in boundary application
10		
CO 2- PO 12	2	Apply the concept in the solution of heat equation
CO 3-		Understand the idea of complay variable and
PO 1	3	Understand the idea of complex variable and functions
CO 3-		Understand the idea of continuity of complex
PO 2	3	valued functions
ruz		valueu luncuons

. <u></u> ,		
CO 3-	3	Understand the idea of differentiability of complex
PO 3	5	valued function
CO 3-	3	Understand the concept of Differentiability and
PO 4	5	Cauchy Riemann equations
CO 3-	2	Understand the engineering application of analytic
PO 5		function in fluid mechanics
CO 3-	1	Understand the idea about stream and potential
PO 6	1	function
CO		
3-PO	2	Understand the idea about harmonic function
10		
CO 3-	2	Understand the idea about harmonic conjugate
PO 12	2	Understand the idea about harmonic conjugate
CO 4-	3	Evaluation Couchy's integral theorem
PO 1	3	Evaluation Cauchy's integral theorem
CO 4-	3	Evolution of complex integration
PO 2	3	Evaluation of complex integration
CO 4-	2	Exclustion of Coucher's integral formula
PO 3	3	Evaluation of Cauchy's integral formula
CO 4-	2	Evaluation of complex integral using Cauchy's
PO 4	3	integral formula
CO 4-	2	
PO 5	2	Understanding of the idea of complex integration
CO 4-	1	Understanding of idea about multi connected
PO 6	1	region
СО		
4-PO	2	Series expansion of analytic function
10		
CO 4-	2	Understand the significance of series expansion in
PO 12	2	practical problems
CO 5-	2	
PO 1	3	Knowledge about the singularities
CO 5-	2	
PO 2	3	Understanding of residues and its evaluation
CO 5-	2	Apply the residue theorem for evaluation of real
PO 3	3	integrals
CO 5-	2	
PO 4	3	Apply the residue theorem for evaluation of integrals
CO 5-	2	
PO 5	2	Derivation of residue theorem
CO 5-	1	
PO 6	1	Analyse the application of residue theorem
СО		
5-PO	2	Apply the residue theorem for evaluation of
10		improper integrals
CO 4-	2	Apply the residue theorem for evaluation of
PO 12	2	trigonometric functions

JUSTIFICATIONS FOR CO-PSO MAPPING

MAP PIN	LOW/ME DIUM/	JUSTIFICATION
G	HIGH	
CO1 - PSO 1	3	Partial differential equations can be used to model problems in electrical equivalent circuit.
CO2 - PSO 1	3	Solving problems in thermal engineering requires a working knowledge of the heat equation and methods of solution
CO3 - PSO 1	3	Solutions of the Laplace equation, and harmonic conjugates have applications in electromagnetic and communication engineering.
CO1 - PSO 2	2	The various methods for solving partial differential equations can be used to analyse communication systems

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSIONAL REQUIREMENTS:

SNO	DESCRIPTION	RELEVENCE TO PO	PROPOSED ACTIONS
1	Basic concepts on complex	1	Reading, Assignments
2	analysis Application of complex analysis in solving various Engineering problems	2 & 3	Reading
3	Solution of Homogenous PDE with constant Coefficient	2	Reading

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

	SINO:	ΤΟΡΙϹ	PROPOSED ACTIONS	RELEVENCE TO PO
--	-------	-------	---------------------	--------------------

	Application of	Reading	3
1	analytic functions	6	_
	in Engineering		
	Derivation of	Reading	1
2	Cauchy's integral		
Δ	theorem and		
	Residue theorem		
	Application of	Reading	2
3	Residue theorem		
5	in the evaluation		
	of real integrals		
	Steady state	Reading	3
4	condition of one		
4	dimensional heat		
	equation		

WEB SOURCE REFERENCES / ICT ENABLED TEACHING LEARNING RESOURCES:

http://www.math.com/

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

☑ CHALK & TALK	⊠ STUD. ASSIGNMEN T	☑ WEB RESOURCE S	⊠LCD/SMAR T BOARDS
□ STUD. SEMINAR S	□ ADD-ON COURSES		

ASSESSMENT METHODOLOGIES-DIRECT

☑ ASSIGNME NTS	□ STUD. SEMINA RS	☑ TESTS/MO DEL EXAMS	☑ UNIV. EXAMINATIO N
□ STUD. LAB PRACTICES	□ STUD. VIVA	□ MINI/MAJO R PROJECTS	□ CERTIFICATI ONS
□ ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

☑ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	☑ STUDENT FEEDBACK ON FACULTY (TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	□ OTHERS

Prepared by Anisha Anilkumar (HOD) Approved by Dr. Ramkumar P.B.

COURSE PLAN

UNIT	DETAILS	HOU RS
Ι	PARTIAL DIFFERENTIAL EQUATIONS Partial differential equations, Formation of partial differential equations –elimination of arbitrary constants- elimination of arbitrary functions, Solutions of a partial differential equations, Equations solvable by direct integration, Linear equations of the first order- Lagrange'slinearequation,Non- linearequationsofthefirstorder-Charpit'smethod,Solution of equation by method of separation ofvariables.	8
II	APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS One dimensional wave equation- vibrations of a stretched string, derivation, solution of the wave equation using method of separation of variables, D'Alembert's solution of the wave equation, One dimensional heat equation, derivation, solution of the heat equation	10
III	COMPLEX VARIABLE-DIFFERENTIATION Complex function, limit, continuity, derivative, analytic functions, Cauchy-Riemann equations, harmonic functions, finding harmonic conjugate, Co nformal mappings -mappings $w = z^2$, $w = e^z$, Linear fractional transformation $w = 1/z$. fixed points, Transformation $w=z \sin z$ (From sections 17.1, 17.2 and 17.4 only mappings $w = z^2$, $w = e^z$, $w = 1$, $w = sinz$ and problems based on these transformation need to be discussed.	9
IV	COMPLEX VARIABLE-INTEGRATION Complex integration, Line integrals in the complex plane, Basic properties, First evaluation method-indefinite integration and substitution of limit, second evaluation method-use of a representationofapath,Contourintegrals,Cauchyintegraltheor em(withoutproof)onsimply connected domain, Cauchy integral theorem (without proof) on multiply connected domain CauchyIntegralformula(withoutproof),CauchyIntegralformu laforderivativesofananalytic function, Taylor's series and Maclaurin series.,	9
V	COMPLEX VARIABLE-RESIDUE INTEGRATION Laurent's series(without proof), zeros of analytic functions, singularities, poles, removable singularities,	9

essential singularities, Residues, Cauchy Residue theory	orem
(without proof), Evaluation of definite integral using r	residue
theorem. Resudue integration of real integrals and rati	onal
an a	
$\int f(x)dx$	
functions. Improper integrals of the form $-\infty$.	
TOTAL HOURS	45

QUESTION BANK

Module 1

- Form the differential equation satisfied by $xyz = \varphi(x + y + z)$.
- Form the differential equation satisfied by z = f(x) + eyg(x).
- Form the differential equation satisfied by z = f1(y + 2x) + f2(y 3x).
- Solve the PDE xp + yq = 3z
- Solve the PDE $(y^2 + z^2 x^2)p 2xyq + 2xz = 0$
- Solve the PDE $z(x + y)p + z(x y)q = x^2 + y^2$ (Hint: (x, -y, z) and (y, x, -z) are the multipliers)
- Solve the PDE q = px + p2 by Charpit's method
- Using Charpit's method solve p2x + q2y = z
- Using Charpit's method solve pxy + pq + qy = yz
- Using Charpit's method solve 1 + p2 = qz

Module 2

- 1. Derive the one dimensional wave equation.
- 2. Find the solution of the wave equation corresponding to the initial deflection

$$f(x) = egin{cases} rac{2k}{l}x & 0 < x < l/2 \ rac{2k}{l}(l-x) & l/2 < x < l \end{cases}$$

and initial velocity 0.

- 3. A tightly stretched string of length l has its ends fastened at x = 0, x = l. The mid point of the string is then taken to a height h and the string is then released from rest in that position. Find the lateral displacement of a point of the string at time t from the instant of release.
- 4. Solve $\frac{\partial^2 y}{\partial t^2} = 4 \frac{\partial^2 y}{\partial x^2}$ using the method of separation of variables subject to

$$y(0,t)=y(5,t)=0$$
 $y(x,0)=0, rac{\partial y}{\partial t}=egin{cases} 0&0\leq x<4\5-x&4\leq x\leq5 \end{cases}$

5. Solve $\frac{\partial^2 y}{\partial t^2} = 8 \frac{\partial^2 y}{\partial x^2}$ using the method of separation of variables subject to

$$y(0,t) = y(2\pi,t) = 0$$
 $y(x,0) = egin{cases} 3x & 0 \leq x \leq \pi \ 6\pi - 3x & \pi < x \leq 2\pi \end{cases}, rac{\partial y}{\partial t} = 0$

Module 3

- 1. Show that $\lim_{x\to 0} \frac{x^2y}{x^4+y^2}$ does not exist even though this function approaches the same limit along every straight line through the origin.
- 2. Find out, and give reason, whether

$$f(z) = egin{cases} (Re \; z^2)/|z| & z
eq 0 \ 0 & z = 0 \end{cases}$$

is continuous at z = 0.

- 3. Show that $w = \sin z$ is analytic everywhere. Also find its derivative.
- 4. Show that

$$f(z) = \begin{cases} \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2} & z \neq 0\\ 0 & z = 0 \end{cases}$$

satisfies the Cauchy-Riemann equations at z = 0, but not differentiable at z = 0.

- 5. Find the value of a so that $u = xy + ax^2 y^2$ is harmonic. Find its harmonic conjugate.
- 6. Find the harmonic conjugate of $u = \frac{x}{x^2 + y^2}$
- 7. Find the critical point and fixed point of $w = \frac{1}{2} \left(z + \frac{1}{z} \right)$
- 8. Discuss the transformation $w = \cos z$

Module 4

- 1. Find the Maclaurin series of $\sin^2(z)$ and its radius of convergence.
- 2. Find the Taylor series of $f(z) = \cos z$ with center at $z_0 = \pi$, and find its radius of convergence.
- 3. Find the Taylor series of $f(z) = \frac{1}{(z-i)^2}$ with center at $z_0 = -i$, and find its radius of convergence.
- 4. Evaluate $\int_C e^z dz$, where C is the shortest path from $\frac{\pi}{2i}$ to πii .
- 5. Evaluate $\int_C ze^{z^2} dz$, where C is the path from 1 along the axes to i.
- 6. Evaluate $\int_C Re(z^2) dz$ clockwise around the boundary of the square with vertices 0, i, 1 + i, 1.
- 7. Show that $\int_C \frac{1}{z} dz = \pi i$ or $-\pi i$ according as C is the semicircle |z| = 1 above or below the real axis from (1,0) to (-1,0).
- 8. Evaluate $\int_C \frac{\cos \pi z}{z^2 1} dz$ where C is the rectangle with vertices $2 \pm i, -2 \pm i$

9. Evaluate
$$\int_C \frac{e^z}{(z+1)^3} dz$$
 where C is $|z+1| = 1$

10. Evaluate
$$\int_C \frac{z^2 + 5z + 3}{(z-2)^3} dz$$
 where C is $|z| = 3$

Module 5

- 1. Find the Laurent series expnasion of $rac{1}{z^2(z-i)}$ at the singular point z=i.
- 2. Find the Laurent series expnasion of $z^3 \cosh \frac{1}{z}$ at the singular point z = 0.
- 3. Determine singularities of the following function
 - (a) $\tan \pi z$ (b) $\cot z$ (c) $\frac{1}{1-e^z}$
- 4. Expand the following function in Laurent's series

(a)
$$\frac{1}{z-2}$$
, for $|z| > 2$
(b) $\frac{z^2-1}{(z+2)(z+3)}$ for $|z| > 3$

5. Find the Laurent series expansion of $\frac{1 - \cos z}{z^3}$, about z = 0.

6. Find all singular points and the corresponding residues:

(a)
$$\frac{1}{(z^2-1)^2}$$

(b) $\frac{1/3}{z^4-1}$
(c) $\frac{z^2}{z^4-1}$

100001/EC300B

SOLID STATE DEVICES

COURSE INFORMATION SHEET

DEGREE: B. TECH
SEMESTER: 3 CREDITS: 4
COURSE TYPE: CORE
CONTACT HOURS: 3 +1 (Tutorial)
Hours/Week
LAB COURSE NAME: Nil

SYLLABUS:

Module 1:

Elemental and compound semiconductors, Intrinsic and Extrinsic semiconductors, concept of effective mass, Fermions-Fermi Dirac distribution, Fermi level, Doping & Energy band diagram, Equilibrium and steady state conditions, Density of states & Effective density of states, Equilibrium concentration of electrons and holes.

Excess carriers in semiconductors: Generation and recombination mechanisms of excess carriers, quasi-Fermi levels.

Module 2:

Carrier transport in semiconductors, drift, conductivity and mobility, variation of mobility with temperature and doping, Hall Effect.

Diffusion, Einstein relations, Poisson equations, Continuity equations, Current flow equations, Diffusion length, Gradient of quasi-Fermi level.

Module 3:

PN junctions: Contact potential, Electrical Field, Potential and Charge distribution at the junction, Biasing and Energy band diagrams, Ideal diode equation.

Metal Semiconductor contacts, Electron affinity and work function, Ohmic and Rectifying Contacts, current voltage characteristics.

Bipolar junction transistor, current components, Transistor action, Base width modulation. **Module 4:**

Ideal MOS capacitor, band diagrams at equilibrium, accumulation, depletion and inversion, threshold voltage, body effect, MOSFET-structure, types, drain current equation (derive)-linear and saturation region, Drain characteristics, transfer characteristics.

Module 5: Two port network Parameters

MOSFET scaling – need for scaling, constant voltage scaling and constant field scaling. Sub threshold conduction in MOS.

Short channel effects- Channel length modulation, Drain Induced Barrier Lowering, Velocity Saturation, Threshold Voltage Variations and Hot Carrier Effects.

Non-Planar MOSFETs: Fin FET -Structure, operation, and advantages.

TEXT/REFERENCE BOOKS:

T/R BOO	OK TITLE/AUTHORS/PUBLICATION
---------	------------------------------

T1 Ben G. Streetman and Sanjay Kumar Banerjee, Solid State Electronic Devices, Pearson

6/e, 2010 (Modules I, II and III)

T2 Sung Mo Kang, CMOS Digital Integrated Circuits: Analysis and Design, McGraw-Hill, Third Ed., 2002 (Modules IV and V)

sics and Devices, McGraw Hill, 4/e, 2012					
Sze S.M., Semiconductor Devices: Physics and Technology, John Wiley, 3/e, 2005					
ces Fundamentals, Pearson, 2006					
Sze S.M., Physics of Semiconductor Devices, John Wiley, 3/e, 2005					
nentals of Semiconductor Devices, 1e, McGraw Hill,2015					
nd Modelling of the MOS Transistor, Oxford University					
ndrakasan, Borivoje Nikolic, Digital Integrated Circuits –					
1E					
EBRA AND CALCULUS					
G PHYSICS					
asic semiconductor concepts.					
ing of current semiconductor devices and technology to					
ectronics circuits and system					
Blooms' Taxonomy Level					
fine and understand the Knowledge & Understand					
bhysics. (Level 1, 2)					
Graduates will be able to describe and apply the Understand & Apply					
on processes in (Level 2, 3)					
Graduates will be able to explain the structure, creation Understand (level 2)					
of electric field and working of PN junction semiconductor diodes.					
ustrate the minority carrier Apply (level 3)					
ion semiconductor diodes.					
ls and can-do research in Create (level 6)					
diagram of PN junction diodes, BJTs, metal semiconductor junctions and MOS capacitors.					
1 NOS capacitors.					
č					
concepts that studied operation and the various and analyze energy band des, BJTs, metal d MOS capacitors. Programme-					

		_					-				-					
4	2	2		1												
5	2	2		3								2				
6	2	2		1												
100902/	2.2	2		1.4								2.5	2	3		
EC300B	2.2	2														
JUSTIFI	CATI	ON I	FOR	THE	COI	RRE	LATI	ON	LEV	EL A	SSIC	SNED	IN F	EACI	I CE	LL
OF THE																
MAPPIN	G	LC	W/N	AEDI	UM/	HIG	H JU	STI	FICA	TIO	N					
PO1-CO.	l	3										ental k	knowl	edge	in	
										or ph	-					
PO1-		2					_	-				owled	lge to	com	plex	
CO.2,3,4,	5,6									proble						
PO2-	1 7 6	2										vsis of	com	plex		
CO.1,2,3,4		1								proble		1.1	1	•		
PO4-CO.2								-		_		alid c				
PO4-CO.5)	3								y SK111	s and	to pr	oduce	e valio	1	
PO12-CO	1	2						nclus		f		1	- 4	1		1
P012-C0	CO1 3 Understanding of semiconductor physics will help them in lifelong learning				1											
PO12-CO	5	2					Re	searc	h in 1	new c	once	pts he	lps th	em ir	ı	
							inc	lepen	dent	learn	ing					
PSO1-CO	.1	2					Kn	owle	dge i	n sen	nicon	ductor	r phys	sics w	vill he	elp
										I syst						
PSO2-CO	.1	3										ductor				elp
									deve	lopin	g app	licatio	ons us	sing E	EDA	
							toc									
GAPS IN				BUS -	TO	MEE	T IN	DUS	TRY	/PR()FES	SION	N			
REQUIR				т										NC		
	DESC					T-17-						$\frac{D}{D}$ AC				
 Fabrication of PN Junctions, FETs e Physics of HEMT devices 			I's et	s etc. NPTEL + Reading Assignments NPTEL + Reading Assignments												
								371.1					0	0		
PROPOSE								YLL	ABU	5/AS	SIG	NME	N 171N	IDUS	IRY	
VISIT/GU TOPICS		-	-				-	ED T	OPIC	CS/D	ESIG	N:				
	DESC							1				POSI	ED A	CTIC	ONS	
	Hetero											refere				
<u> </u>		,												~]		

2 Device Fabrication 3 SPICE models

WEB SOURCE REFERENCES:

1 NPTEL, IITM: Solid State Devices

2 NPTEL web content IITD: Semiconductor Devices

3 PURDUE UNIVERSITY: Modern MOSFET

4 JLab Science education: The element SI

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

Web reference [1,2]

Web reference [2,4]

□ CHALK & TALK	□ STUD.	□ ONLINE	\Box WEB		
	ASSIGNMENT	PLATFORM	RESOURCES		
□ LCD/SMART	□STUD. SEMINARS	□ ADD-ON			
BOARDS		COURSES			
ASSESSMENT METI	HODOLOGIES-DIRE	CT	·		
□ ASSIGNMENTS	□STUD.	⊐ STUD. VIVA	\Box UNIV.		
	SEMINARS		EXAMINATION		
□ STUD. LAB	□ TESTS/MODEL [☐ MINI/MAJOR	□ CERTIFICATIONS		
PRACTICES	EXAMS I	PROJECTS			
□ADD-ON	□ OTHERS				
COURSES					
ASSESSMENT METI	HODOLOGIES-INDI	RECT			
□ ASSESSMENT OF	COURSE OUTCOMES	5 🗆 STUDENT FEI	EDBACK ON		
(BY FEEDBACK, ON	CE)	FACULTY	FACULTY		
□ASSESSMENT OF N	MINI/MAJOR	□ OTHERS	□ OTHERS		
PROJECTS BY EXT. EXPERTS					

Prepared by Dr. Simi Zerene Sleeba Ms. Jasmin Sebastin Mr. Kiran K A

Approved by

Dr. Rithu James (HoD)

COURSE PLAN

No	Торіс	No. of Lectures
1	Module1	
1.1	Elemental and compound semiconductors, Intrinsic and Extrinsic semiconductors, Effective mass	2
1.2	Fermions-Fermi Dirac distribution, Fermi level, Doping & Energy band diagram	2
1.3	Equilibrium and steady state conditions, Density of states & Effective density of states	1
1.4	Equilibrium concentration of electrons and holes.	1
1.5	Excess carriers in semiconductors: Generation and recombination mechanisms of excess carriers, quasi Fermi levels.	2
1.6	TUTORIAL	2
2	Module 2	
2.1	Carrier transport in semiconductors, drift, conductivity and mobility, variation of mobility with temperature and doping.	2
2.2	Diffusion equation	1
2.3	Einstein relations, Poisson equations	1
2.4	Continuity equations, Current flow equations	1
2.5	Diffusion length, Gradient of quasi Fermi level	1
2.6	TUTORIAL	2
3	Module 3	
3.1	PN junctions : Contact potential, Electrical Field, Potential and Charge distribution at the junction, Biasing and Energy band diagrams	2
3.2	Ideal diode equation	1
3.3	Metal Semiconductor contacts, Electron affinity and work function, Ohmic and Rectifying Contacts, current voltage characteristics	3
3.4	Bipolar junction transistor – working,, current components, Transistor action, Base width modulation.	2
3.5	Derivation of terminal currents in BJT	2
3.6	TUTORIAL	1
4	Module 4	
4.1	Ideal MOS capacitor, band diagrams at equilibrium, accumulation, depletion and inversion	2
4.2	Threshold voltage, body effect	1

4.3	MOSFET-structure, working, types,	2
4.4	Drain current equation (derive)- linear and saturation region, Drain characteristics, transfer characteristics.	2
4.5	TUTORIAL	1
5	Module 5	
5.1	MOSFET scaling – need for scaling, constant voltage scaling and constant field scaling.	2
5.2	Sub threshold conduction in MOS.	1
5.3	Short channel effects- Channel length modulation, Drain Induced Barrier Lowering, Velocity Saturation, Threshold Voltage Variations and Hot Carrier Effects.	3
5.4	Non-Planar MOSFETs: Fin FET –Structure, operation and advantages	1

MODEL QUESTION PAPER

RAJAGIRI SCHOOL OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) THIRD SEMESTER B.TECH DEGREE EXAMINATION, (Model Question Paper)

100902/EC300B SOLID STATE DEVICES

Max. Marks: 100 **Duration: 3 Hours**

PART A

(Answer ALL Questions. Each Carries 3 mark.)

- 1. Draw the energy band diagram of P type and N type semiconductor materials, clearly indicating the different energy levels.
- 2. Indirect recombination is a slow process. Justify
- 3. Explain how mobility of carriers vary with temperature.
- 4. Show that diffusion length is the average length a carrier moves before recombination.
- 5. Derive the expression for contact potential in a PN junction diode.
- 6. Explain Early effect? Mention its effect on terminal currents of a BJT.
- 7. Derive the expression for threshold voltage of a MOSFET.
- 8. Explain the transfer characteristics of a MOSFET in linear and saturation regions.
- 9. Explain Subthreshold conduction in a MOSFET. Write the expression for Subthreshold current.
- 10. Differentiate between constant voltage scaling and constant field scaling.

PART – B

(Answer one question from each module; each question carries 14 marks.)

Module – I

1.(a) Derive law of mass action.

(b) An n-type Si sample with $N_d = 10^5$ cm⁻³ is steadily illuminated such that $g_{\alpha\beta} = 10^{21}$ EHP/cm³ s. If $\tau n = \tau p = 1 \mu s$ for this excitation, Calculate the separation in the Quasi-Fermi levels (Fn-Fp). Draw the Energy band diagram. (6 marks)

OR

2. (a) Draw and explain Fermi Dirac Distribution function and position of Fermi level in intrinsic and extrinsic semiconductors. (8 marks)

(b) The Fermi level in a Silicon sample at 300 K is located at 0.3 eV below the bottom of

Department of EC, RSET

(8 marks)

the conduction band. The effective densities of states $N_c=3.22 \times 10^{19} \text{ cm}^3$ and $N_v=1.83 \times 10^{19} \text{ cm}^3$. Determine (a) the electron and hole concentrations at 300K (b) the intrinsic carrier concentration at 400 K. (6 marks)

Module-II

3. (a) Derive the expression for mobility, conductivity and Drift current density in a semiconductor. (8 marks) (b) A Si bar 0.1 μ m long and 100 μ m² in cross-sectional area is doped with 10¹⁷ cm⁻³ phosphorus. Find the current at 300 K with 10 V applied. How long will it take an average electron to drift 1 μ m in pure Si at an electric field of 100 V/cm? (6 marks)

OR

4. (a) A GaAs sample is doped so that the electron and hole drift current densities are equal in an applied electric field. Calculate the equilibrium concentration of electron and hole, the net doping and the sample resistivity at 300 K. Given μn = 8500 cm²/Vs, μp = 400 cm²/Vs, ni = 1.79 x 10⁶ cm³. (7 marks)
(b) Derive the steady-state diffusion equations in semiconductors. (6 marks)

Module - III

5.(a) Derive the expression for ideal diode equation. State the assumptions used. (9 marks)

(b) Boron is implanted into an n-type Si sample (Nd = 10^{16} cm⁻³), forming an abrupt junction of square cross section with area = 2 x 10^{-3} cm⁻². Assume that the acceptor concentration in the p-type region is Na = 4 x 10^{18} cm⁻³. Calculate V₀, W, Q₁, and E₀ for this junction at equilibrium (300 K).

(5 marks)

OR

6.With the aid of energy band diagrams, explain how a metal – N type Schottky contact function as rectifying and ohmic contacts. (14 marks)

Module - IV

7. (a) Starting from the fundamentals, derive the expression for drain current of a MOSFET in the two regions of operation. (8 Marks)

(b) Find the maximum depletion width, minimum capacitance C_i , and threshold voltage for an ideal MOS capacitor with a 10-nm gate oxide (Si0₂) on p-type Si with Na = 10^{16} cm-3. (b) Include the effects of flat band voltage, assuming an n + polysilicon gate and fixed oxide charge of 5 x 10^{10} q (C/cm²). (6 marks)

(8 Marks)

OR

8. (a) Explain the CV characteristics of an ideal MOS capacitor

(b) For a long channel n-MOSFET with W = 1V, calculate the V_G required for an I_{D(st.)} of 0.1 mA and V_{D(st.)} of 5V. Calculate the small-signal output conductance g and V and the transconductance g _{m(st.)} at V_D = 10V. Recalculate the new I_D for (V_G - V_T) = 3 and V_D = 4V. (6 marks)

Module - V

9. Explain Drain Induced Barrier Lowering, Velocity Saturation, Threshold Voltage Variations and Hot Carrier Effects associated with scaling down of MOSFETs

(14 marks)

OR

10. With the aid of suitable diagrams explain the structure and working of a FINFET. List its advantages. (14 marks)

100001/EC300C

LOGIC CIRCUIT DESIGN

COURSE INFORMATION SHEET

PROGRAMME: Electronics and Communication Engineering	DEGREE: B.Tech
COURSE: LOGIC CIRCUIT DESIGN	SEMESTER: 3 CREDITS: 4
COURSE CODE 100902/EC300C	COURSE TYPE: CORE
REGULATION: 2021	
COURSE AREA/DOMAIN: DIGITAL ELECTRONICS	CONTACT HOURS: 4 hours /Week.
CORRESPONDING LAB COURSE CODE	LAB COURSE NAME: LOGIC DESIGN
(IF ANY):	LAB
100902/EC322T	

SYLLABUS:

UNIT	DETAILS	HOURS
I	Binary and hexadecimal number systems; Methods of base conversions; Binary and hexadecimal arithmetic; Representation of signed numbers; Fixed and floating point numbers; Binary coded decimal codes; Gray codes; Excess 3 code. Alphanumeric codes: ASCII. Basics of verilog basic language elements: identifiers, data objects, scalar data types, operators.	12
Π	Boolean postulates and laws – Logic Functions and Gates De-Morgan's Theorems, Principle of Duality, Minimization of Boolean expressions, Sum of Products (SOP), Product of Sums (POS), Canonical forms, Karnaugh map Minimization. Modeling in verilog, Implementation of gates with simple verilog codes.	7
III	Combinatorial Logic Systems - Comparators, Multiplexers, Demultiplexers, Encoder, Decoder. Half and Full Adders, Subtractors, Serial and Parallel	8

	Adders, BCD Adder. Modeling and simulation of combinatorial circuits with verilog codes at the gate level	
IV	Building blocks like S-R, JK and Master-Slave JK FF, Edge triggered FF, Conversion of Flipflops, Excitation table and characteristic equation. Implementation with verilog codes. Ripple and Synchronous counters and implementation in verilog, Shift registers-SIPO, SISO, PISO, PIPO. Shift Registers with parallel Load/Shift, Ring counter and Johnsons counter. Asynchronous and Synchronous counter design, Mod N counter. Modeling and simulation of flipflops and counters in verilog.	11
V	TTL, ECL, CMOS - Electrical characteristics of logic gates – logic levels and noise margins, fan-out, propagation delay, transition time, power consumption and power-delay product. TTL inverter - circuit description and operation; CMOS inverter - circuit description and operation; Structure and operations of TTL and CMOS gates; NAND in TTL and CMOS, NAND and NOR in CMOS.	7
TOTA	L HOURS	45

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
1.	Mano M.M., Ciletti M.D., "Digital Design", Pearson India, 4th Edition. 2006
2.	D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989
3.	S. Brown, Z. Vranesic, "Fundamentals of Digital Logic with Verilog Design", McGraw Hill
4.	Samir Palnikar"Verilog HDL: A Guide to Digital Design and Syntheis", Sunsoft Press

5.	R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009
6.	W.H. Gothmann, "Digital Electronics – An introduction to theory and practice", PHI, 2 nd edition ,2006
7.	Wakerly J.F., "Digital Design: Principles and Practices," Pearson India, 4th 2008
8.	A. Ananthakumar ,"Fundamentals of Digital Circuits", Prentice Hall, 2nd edition, 2016
9	Fletcher, William I., An Engineering Approach to Digital Design, 1st Edition, Prentice Hall India, 1980

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
100908/CO900F	Basic Electrical and Electronics Engineering		2nd

COURSE OBJECTIVES:

1	Impart the basic knowledge of logic circuits and enable students to apply it to design a
	digital system.

COURSE OUTCOMES:

SNO	DESCRIPTION
1	Explain the elements of digital system abstractions such as digital representations of information, digital logic and Boolean algebra
2	Create an implementation of a combinational logic function described by a truth table using and/or/inv gates/ muxes
3	Compare different types of logic families with respect to performance and efficiency
4	Design a sequential logic circuit using the basic building blocks like flip-flops
5	Design and analyze combinational and sequential logic circuits through gate level Verilog models.

CO-PO-PSO MAPPING:

	Programme Outcomes (POs)										Programme-specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3											3		
2	3	3	3										3		
3	3	3											3		
4	3	3	3										3		
5	3	3	3		3									3	
10090 2/EC3 00C	3	3	3		3										

JUSTIFICATION FOR CO-PO MAPPING

MAPPING	LEVEL	JUSTIFICATION

CO1- PO1	3	Students will learn digital logic and Boolean algebra.
CO1- PO2	3	Students will analyze digital representation of information to decide on the type of circuits.
CO2- PO1,	3	Students will learn the working and design of combinational circuits.
CO2-PO2	3	Students will analyze the circuit requirements through truth tables for the design of combinational circuits.
CO2- PO3	3	Students will perform design of combinational circuits.
CO3- PO1	3	Students will learn the working of different types of logic families.
CO3- PO2	3	Students will analyze the behavior of various logic families to make decisions, on the type of logic families to be chosen, for various applications.
CO4- PO1	3	Students will learn the working and design of sequential circuits.
CO4- PO2	3	Students will analyze the requirements and make conclusions on the type of circuits to be designed
CO4- PO3	3	Students will perform design of sequential circuits.
CO5- PO1	3	Students will learn and apply the Knowledge of Logic circuit design to describe its behavior in Verilog HDL.
CO5- PO2	3	Students will analyze the simulation output to verify the correctness of the HDL model.
CO5- PO3	3	Students will be able the design HDL models of digital circuits(problems) using Verilog.
CO5- PO5	3	Students will study and perform programming of Verilog HDL.

JUSTIFICATION FOR CO-PSO MAPPING

MAPPING	LEVEL	JUSTIFICATION
CO1-PSO1	3	Students will learn digital logic and Boolean algebra.

CO2-PSO1	3	Students will learn the working and design of combinational circuits.
CO3-PSO1	3	Students will learn the working of different types of logic families.
CO4-PSO1	3	Students will learn the working and design of sequential circuits.
CO5-PSO2	3	Students will learn and apply modern tools such as Verilog HDL to design and analyze logic circuits.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl	DESCRIPTION	PROPOSED	PO
No		ACTIONS	MAPPING
1	Familiarization of HDL tools through hands on session	Conduct hands on session for Verilog HDL	PO-5

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl No	DESCRIPTION	PO MAPPING
2	Implementation of digital circuit designs on FPGA	PO-3, PO-5

WEB SOURCE REFERENCES:

1	http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT- %20Guwahati/digital_circuit/frame/
2	http://www.electronics-tutorials.ws/logic/logic_1.html

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

✓ CHALK &	✓ STUD.	✓ WEB	
TALK	ASSIGNMENT	RESOURCES	
□ LCD/SMART	✓ STUD.	□ ADD-ON	
BOARDS	SEMINARS	COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS	□ STUD. SEMINARS	✓ TESTS/MODEL EXAMS	✓ UNIV. EXAMINATION
✓ STUD. LAB PRACTICES	✓ STUD. VIVA	✓ MINI/MAJOR PROJECTS	□ CERTIFICATIONS
□ ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES	□ STUDENT FEEDBACK ON
(BY FEEDBACK, ONCE)	FACULTY
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	□ OTHERS

Prepared by

Dr. Rithu James

Dr. Jayanthi V S

Approved by

Dr. Jaison Jacob

(HOD)

COURSE PLAN

No	Торіс	No. of Lectures
1	Number Systems and Codes: (12 hours)	
1.1.	Binary, octal and hexadecimal number systems; Methods of base conversions;	2
1.2	Binary, octal and hexadecimal arithmetic;	1
1.3	Representation of signed numbers; Fixed and floating point numbers;	3
1.4	Binary coded decimal codes; Gray codes; Excess 3 code :	1
1.5	Error detection and correction codes - parity check codes and Hamming code- Alphanumeric codes: ASCII	3
1.6	Verilog basic language elements: identifiers, data objects, scalar data types, operators	2
2	Boolean Postulates and Fundamental Gates: (7 hours)	
2.1	Boolean postulates and laws – Logic Functions and Gates, De-Morgan's Theorems, Principle of Duality	2
2.2	Minimization of Boolean expressions, Sum of Products (SOP), Product of Sums (POS)	2
2.3	Canonical forms, Karnaugh map Minimization	1
2.4	Gate level modelling in Verilog: Basic gates, XOR using NAND and NOR	2
3	Combinatorial and Arithmetic Circuits: (8 hours)	
3.1	Combinatorial Logic Systems - Comparators, Multiplexers, Demultiplexers	2
3.2	Encoder, Decoder, Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder	3
3.3	Gate level modelling combinational logic circuits in Verilog: half adder, full adder, mux, decoder, encoder	3

4	Sequential Logic Circuits: (11 hours)	
4.1	Building blocks like S-R, JK and Master-Slave JK FF, Edge triggered FF	2
4.2	Conversion of Flipflops, Excitation table and characteristic equation.	1
4.3	Ripple and Synchronous counters, Shift registers-SIPO.SISO,PISO,PIPO	2
4.4	Ring counter and Johnsons counter, Asynchronous and Synchronous counter design	3
4.5	Mod N counter, Random Sequence generator	1
4.6	Modelling sequential logic circuits in Verilog: flipflops, counters	2
5	Logic families and its characteristics: (7 hours)	
5.1	TTL, ECL, CMOS- Electrical characteristics of logic gates – logic levels and noise margins, fan-out, propagation delay, transition time, power consumption and power-delay product.	3
5.2	TTL inverter - circuit description and operation	1
5.3	CMOS inverter - circuit description and operation	1
5.4	Structure and operations of TTL and CMOS gates; NAND in TTL, NAND and NOR in CMOS.	2

MODEL QUESTION PAPER

RAJAGIRI SCHOOL OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

THIRD SEMESTER B.TECH DEGREE EXAMINATION

Course: 100902/EC300C Logic Circuit Design

Time: 3 Hrs

Max. Marks: 100

PART A

(Answer all questions, each question carries 3 marks)

- 1. Convert 203.5210 to binary and hexadecimal.
- 2. Compare bitwise and logical verilog operators.
- 3. Prove that NAND and NOR are not associative.
- 4. Convert the expression ABCD+ABC'+ACD to minterms.
- 5. Define expressions in Verilog with example.
- 6. Explain the working of a decoder.
- 7. What is race around condition?
- 8. Convert a T flip-flop to D flip-flop.
- 9. Define fan-in and fan-out of logic circuits.
- 10. Define noise margin and how can you calculate it?

PART B

(Answer one question from each module. Each question carries 14 marks)

Module I

11. (A) Subtract 4610 from 10010 using 2's complement arithmetic. (8)

(B) Give a brief description on keywords and identifiers in Verilog with example (6)

OR	
12. (A) Explain the floating and fixed point representation of numbers	(8)
(B) Explain the differences between programming languages and HDLs	(6)
Module II	
13. (A) Simplify using K-map, F(A,B,C,D) = Σ m(4,5,7,8,9,11,12,13,15)	(7)
(B) Write a Verilog code for implementing above function	(7)
OR	
14. (A) Write a Verilog code to implement the basic gates.	(7)
(B) Reduce the following Boolean function using K-Map and implement the logic gates	simplified function using th
F(A,B,C,D) = Σ m(0,1,4,5,6,8,9,10,12,13,14)	(7)
Module III	
15. (A) Design a 3-bit magnitude comparator circuit.	(8)
(B) Write a Verilog description for a one bit full adder circuit.	(6)
OR	
16. (A) Write a verilog code to implement 4:1 multiplexer.	(6)
(B) Implement the logic function F(A,B,C) = Σ m(0,1,4,7) using 8:1 and 4:1 m (8)	nultiplexers
Module IV	
17. Design MOD 12 asynchronous counter using T flip-flop.	(14)
OR	
18. (A) Explain the operation of Master Slave JK flip-flop.	(7)
(B) Derive the output Qn+1 in Terms of Jn, Kn and Qn	(7)
Module V	

19.	(A) Explain in detail about TTL with open collector output configuration	(8)
(B) Draw an ECL basic gate and explain.	(6)
	OR	

- 20. (A) Demonstrate the CMOS logic circuit configuration and characteristics in detail.(8)
 - (B) Compare the characteristics features of TTL and ECL digital logic families (6)

EC 468

NETWORK THEORY

COURSE INFORMATION SHEET

PROGRAMME: ELECTR	DEGREE: B. TECH
ONICS & COMMUNICATION ENGINEERING	
COURSE: NETWORK THEORY	SEMESTER: 3 CREDITS: 4
COURSE CODE: 100902/EC300D	COURSE TYPE: CORE
REGULATION: 2021	
COURSE AREA/DOMAIN: ELECTRONIC	CONTACT HOURS: 4 hrs.
CIRCUITS	
	LAB COURSE NAME: Nil
ANY): Nil	
	1

SYLLABUS:

Module 1: Mesh and Node Analysis

Mesh and node analysis of network containing independent and dependent sources. Supermesh and Supernode analysis. Steady-state AC analysis using Mesh and Node analysis.

Module 2: Network Theorems

Thevenin's theorem, Norton's theorem, Superposition theorem, Reciprocity theorem, Maximum power transfer theorem. (applied to both dc and ac circuits having dependent source).

Module 3: Application of Laplace Transforms

Review of Laplace Transforms and Inverse Laplace Transforms, Initial value theorem & Final value theorem, Transformation of basic signals and circuits into s-domain. Transient analysis of RL, RC, and RLC networks with impulse, step, and sinusoidal inputs (with and without initial conditions). Analysis of networks with transformed impedance and dependent sources.

Module 4: Network functions

Network functions for the single port and two port networks. Properties of driving point and transfer functions. Significance of Poles and Zeros of network functions, Time domain response from pole zero plot. Impulse Function & Response. Network functions in the sinusoidal steady state, Magnitude, and Phase response.

Module 5: Two port network Parameters

Impedance, Admittance, Transmission and Hybrid parameters of two port network. Interrelationship among parameter sets. Series and parallel connections of two port networks. Reciprocal and Symmetrical two port network. Characteristic impedance, Image impedance and propagation constant (derivation not required).

Page Break

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	Valkenburg V., "Network Analysis," Pearson, 3/e, 2019.
T2	Sudhakar A, Shyammohan S. P., "Circuits and Networks- Analysis and Synthesis," McGraw Hill,
R1	Edminister, "Electric Circuits – Schaum's Outline Series," McGraw-Hill, 2009.
R2	2. W. Hayt, J. Kemmerly, J. Phillips, S. Durbin, "Engineering Circuit Analysis," McGraw Hill.
R3	2. K. S. Suresh Kumar, "Electric Circuits and Networks", Pearson, 2008.
R4	3. William D. Stanley, "Network Analysis with Applications", 4/e, Pearson, 2006.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME
100908/CO900F	Basics of Electrical and Electronics Engineering
100908/MA200A	Vector Calculus, Differential Equations and Transforms (Laplace Transform)

COURSE OBJECTIVES:

To familiarize students with analysis of linear time invariant electronic circuits.

COURSE OUTCOMES:

Sl. No	DESCRIPTION	Blooms' Taxonomy Level
1	Graduates will be able to understand and list various methods	Remember &
	like Mesh / Node analysis or Network Theorems to obtain steady state response of the linear time invariant networks.	Understand
		(Level 1, 2)
2	Graduates will be able to examine and a pply Laplace Transforms to determine the transient behaviour of RLC networks.	Understand & Apply
	to determine the transfert benaviour of KEC networks.	(Level 2, 3)
3	Apply Network functions and Network Parameters to analyse the	Apply & Analyse
	single port and two port networks.	(Level 3, 4)

CO-PO-PSO MAPPING

CO No.	Pro	gram	me Ou	itcom	es (PC	Ds)							Programme-specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3										2	2		
2	3	3										2	2		
3	3	3										2	2		
100902/ EC300D	3	3										2	2		

Page Break

JUSTIFICATION FOR THE CORRELATION LEVEL ASSIGNED IN EACH CELL OF THE TABLE

	PO1	PO2	PO12	PSO1
CO1	Basics for real- world electrical network & electronic circuit analysis	Techniques for circuit analysis under different conditions like dependent sources, dc circuits, ac circuits etc.	for more advanced topics in network theory and	Principles & techniques learnt can be extended to many future courses like electronic circuits,

				electromagnetic theory etc.
CO2	transform covered in mathematics to a specific engineering problem	Using Laplace transforms to perform frequency domain analysis of circuits and extending analysis to excitations beyond sinusoids	analysis of circuits in the frequency domain	Principles & techniques learnt can be extended to many future courses like electronic circuits, electromagnetic theory etc.
CO3	and generalization.	Expressing networks using different parameter sets and simplifying analysis based on problem at hand	complex topics like circuit stability analysis, transmission line concepts etc.	Principles & techniques learnt can be extended to many future courses like electronic circuits, electromagnetic theory etc.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SI. No.	DESCRIPTION	PROPOSED ACTIONS	РО		
			MAPPING		
1	System modeling and analysis- checking stability and energy conservation.	Assignments on Laplace Transform, Z transform etc.	PO1, PO2, PO3, PO4, PO5, PO12		
2	Solving first order linear homogeneous and non-homogeneous equations	Assignment (Mathematics)	PO1, PO2, PO3, PO4, PO5, PO12		

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl. No.	DESCRIPTION	PO MAPPING
1	Introduction to PSpice	PO1, PO2, PO3, PO4, PO5
2	MATLAB examples	PO1, PO2, PO3, PO4, PO5
	I I I I I I I I I I I I I I I I I I I	_ , _ , , ,

WEB SOURCE REFERENCES:

1	NPTEL, IITK: Network Analysis
2	MIT open courseware: Circuits and electronics
3	Open courses Eastern Mediterranean University: EENG223 Circuit Theory I

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

□ CHALK & TALK	□ STUD. ASSIGNMENT		□ WEB RESOURCES
□ LCD/SMART BOARDS		□ ADD-ON COURSES	

Page Break

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS	□STUD. SEMINARS		□ UNIV. EXAMINATION
		□ MINI/MAJOR PROJECTS	□ CERTIFICATIONS
□ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	□ STUDENT FEEDBACK ON FACULTY
□ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	□ OTHERS

Prepared by Approved by

Ms. Liza Annie Joseph

Dr. Rithu James

Ms. Maleeha Abdul Azeez

(HoD)

Ms. Anila Kuriakose

Mr. Kiran K A

COURSE PLAN

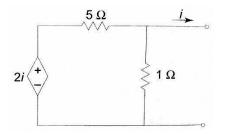
No	Торіс	No. of Lectures
1	Mesh and Node Analysis	-
1.1	Review of circuit elements and Kirchhoff's Laws.	2
1.2	Independent and dependent Sources, Source transformations.	1
1.3	Mesh and node analysis of network containing independent and dependent sources.	3
1.4	Supermesh and Supernode analysis.	1
1.5	Steady-state AC analysis using Mesh and Node analysis.	3
2	Network Theorems (applied to both dc and ac circuits having dependent source)	
2.1	Thevenin's theorem.	1
2.2	Norton's theorem.	1
2.3	Superposition theorem.	2
2.4	Reciprocity theorem.	1
2.5	Maximum power transfer theorem.	2
3	Application of Laplace Transforms	
3.1	Review of Laplace Transforms.	2
3.2	Initial value theorem & Final value theorem (Proof not necessary).	1
3.3	Transformation of basic signals and circuits into s-domain.	2
3.4	Transient analysis of RL, RC, and RLC networks with impulse, step, pulse, exponential and sinusoidal inputs.	3

3.5	Analysis of networks with transformed impedance and dependent sources.	3
4	Network functions	
4.1	Network functions for the single port and two port networks.	2
4.2	Properties of driving point and transfer functions.	1
4.3	Significance of Poles and Zeros of network functions, Time domain response from pole zero plot.	1
4.4	Impulse Function & Response.	1
4.5	Network functions in the sinusoidal steady state, Magnitude and Phase Response.	3

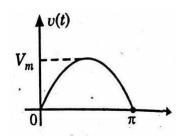
5	Two port network Parameters	
5.1	Impedance, Admittance, Transmission and Hybrid parameters of two port network.	4
5.2	Interrelationship among parameter sets.	1
5.3	Series and parallel connections of two port networks.	2
5.4	Reciprocal and Symmetrical two port network.	1
5.5	Characteristic impedance, Image impedance and propagation constant (Derivation not required).	1

Model Question paper

RAJAGIRI SCHOOL OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) THIRD SEMESTER B.TECH DEGREE EXAMINATION, (Model Question Paper)


100902/EC300D NETWORK THEORY

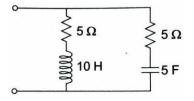
Max. Marks: 100 Duration: 3 Hours


PART A

(Answer ALL Questions. Each Carries 3 mark.)

- 1. Illustrate the source-transformation techniques.
- 2. Explain the concept of supernode.
- 3. State and prove Maximum Power Transfer theorem

4. Evaluate the Norton's equivalent current in the following circuit.

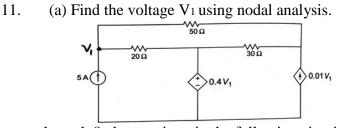


5. Evaluate the Laplace Transform of half-wave rectified sine pulse.

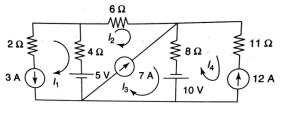
6. Give the two forms of transformed impedance equivalent circuit of a capacitor with initial charge across it.

7. Enumerate necessary condition for a Network Functions to be Transfer Functions.

8. Obtain the pole zero configuration of the impedance function of the following circuit.

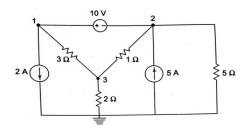


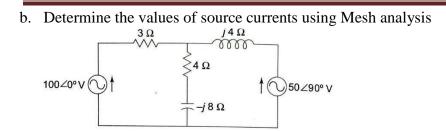
- 9. Define the short-circuit admittance parameter with its equivalent circuit.
- 10. Deduce Z-parameter in terms of h-parameter.


PART - B

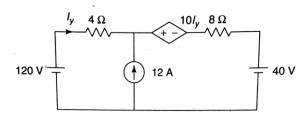
(Answer one question from each module; each question carries 14 marks.)

Module - I



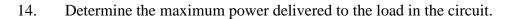

(b) Find the current through 8 ohms resistor in the following circuit using mesh analysis.

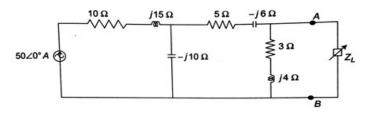
OR


12. (a) Find the power delivered by the 5A current source using nodal analysis method.

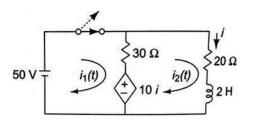


Module - II

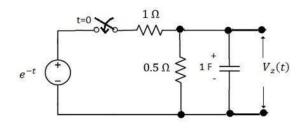

13. (a) Find the current I_y by superposition principle.



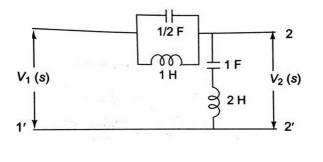
b. Find the Norton's equivalent circuit across the port AB.


OR

Module - III

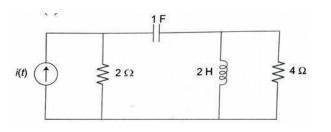

15. (a) The switch is opened at t = 0 after steady state is achieved. Find the expression for the transient current i.

b. A voltage pulse of unit height and width 'T' is applied to a low pass RC circuit at time t=0. Determine the expression for the voltage across the capacitor C as a function of time.


OR

16. In the circuit, the switch is closed at t = 0, connecting a source e^{-t} to the RC circuit. At time t = 0, it is observed that capacitor voltage has the value V(0) = 0.5V. For the element values given, determine V(t) after converting the circuit into transformed domain.

Module - IV


17. For the network, determine Driving point impedance $Z_{11}(s)$, Voltage gain Transfer function $G_{21}(s)$ and Current gain Transfer function $\alpha_{21}(s)$.

OR

18. (a) Compare and contrast the necessary conditions for a network Driving point function and Transfer functions.

b. For following network, evaluate the admittance function Y(s) as seen by the source i(t). Also pot the poles and zeros of Y(s).

Module - V

19. (a) Deduce the transmission parameters of two port network in terms of

(i) Z-parameters, (ii) Y-parameters and (iii) Hybrid parameters.

(b) How to determine the given two port network is Symmetrical.

OR

20.

Two identical sections of the following networks are connected in parallel. Obtain the Y-parameters of the combination.

100908/CO300F

SUSTAINABLE ENGINEERING

COURSE INFORMATION SHEET

PROGRAMME: ELECTRONICS &	DEGREE: B. TECH
COMMUNICATION ENGINEERING	
COURSE: SUSTAINABLE ENGINEERING	SEMESTER: 3 CREDITS: NIL
COURSE CODE: 100908/CO300F	COURSE TYPE: NON- CORE
REGULATION: 2021	
COURSE AREA/DOMAIN: HUMANITIES	CONTACT HOURS: 2 hrs.
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: Nil
ANY): Nil	

SYLLABUS:

Module 1: Sustainability

Introduction, concept, evolution of the concept; Social, environmental and economic sustainability concepts; Sustainable development, Nexus between Technology and Sustainable development; Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs), Clean Development Mechanism (CDM).

Module 2: Environmental Pollution

Air Pollution and its effects, Water pollution and its sources, Zero waste concept and 3 R concepts in solid waste management; Greenhouse effect, Global warming, Climate change, Ozone layer depletion, Carbon credits, carbon trading and carbon foot print, legal provisions for environmental protection.

Module 3: Environmental management standards

ISO 14001:2015 frame work and benefits, Scope and goal of Life Cycle Analysis (LCA), Circular economy, Biomimicking, Environment Impact Assessment (EIA), Industrial ecology and industrial symbiosis.

Module 4: Resources and its utilisation

Basic concepts of Conventional and non-conventional energy, General idea about solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans and Geothermal energy.

Module 5: Sustainability practices

Basic concept of sustainable habitat, Methods for increasing energy efficiency in buildings, Green Engineering, Sustainable Urbanisation, Sustainable cities, Sustainable transport.

TEXT/REFERENCE BOOKS:

T/R BOOK TITLE/AUTHORS/PUBLICATION

T1	Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and
	Case Studies, Prentice Hall.
T2	Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable
	design and development, Cengage learning
R1	Environment Impact Assessment Guidelines, Notification of Government of India,
	2006
R2	Ni bin Chang, Systems Analysis for Sustainable Engineering: Theory and
	Applications, McGraw-Hill Professional.
R3	Twidell, J. W. and Weir, A. D., Renewable Energy Resources, English Language Book
	Society (ELBS).
R4	Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication,
	London, 1998

COURSE PRE-REQUISITES: NIL

 Basic Sciences- Physics, Chemistry, Biology, Geography (High School Level)

COURSE OBJECTIVES:

1	To inculcate in students an awareness of environmental issues and the global initiatives
	towards attaining sustainability. The student should realize the potential of technology in
	bringing in sustainable practices.

COURSE OUTCOMES:

Sl. No	DESCRIPTION
1	Understand the relevance and the concept of sustainability and the global initiatives in this direction
2	Explain the different types of environmental pollution problems and their sustainable solutions
3	Discuss the environmental regulations and standards.
4	Outline the concepts related to conventional and non-conventional energy
5	Demonstrate the broad perspective of sustainable practices by utilizing engineering knowledge and principles

CO-PO-PSO MAPPING

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3	CO No.					Progra	amme C	Outcome	es (POs))						e-specific s (PSOs)
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

1			2	3			2		2
2			2	3			2		2
3			2	3			2		2
4			2	3			2		2
5			2	3			2		2
ECT205			2	3			2		2

JUSTIFICATION FOR THE CORRELATION LEVEL ASSIGNED IN EACH CELL OF THE TABLE

	PO6	PO7	PO12	PSO3
CO1	The knowledge about the concept and importance of sustainability will help the student to focus better on societal, health, safety and cultural aspects of his/her profession		Sustainable engineering is one of the elements of ethical engineering practices.	
CO2	Student's understanding of causes, effects and control of pollution contributes to making him/her a responsible engineer	The course entirely deals with		
CO3	Student's basic knowledge of environmental standards and environmental impact assessment will guide him/her in the assessment of his/her engineering practice.	environment and sustainablity, and thus all the course outomes fully contributes to this programme outcome The course entirely deals with environment and sustainablity, and thus all the	Leads to more efficient energy management systems based on EIA	Each of the COs creates an awareness in the student about carrying out their responsibilities with due the consideration towards environment
CO4	The understanding of basic concepts on conventional and non conventional energy sources will enable the student to understand importance of energy efficient systems	sustainability, and thus all the course outomes fully contributes to this programme outcome	Leads to more efficient utilization of resource and energy consumption	protection and sustainability.
CO5	The student's understanding of sustainable devlopment will help him be a responsible engineer working for the benefit of the society.		Helps the student to opt for sustainable energy resources where applicable in the project.	

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl	DESCRIPTION	PROPOSED	PO
No		ACTIONS	MAPPING

1	Practical Case studies	Discussions,	PO6, PO7, PO12
		Presentations	

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl	DESCRIPTION	PO
No		MAPPING
1	Group Discussions	PO6, PO7, PO9, PO10
2	Seminars & Projects	PO6, PO7, PO9, PO10

WEB SOURCE REFERENCES:

1	http://www.pittstate.edu/office/president/initiatives/sustainability/what-is-sustainability.dot
2	http://www.un.org/documents/ga/conf151/aconf15126-1annex1.htm
3	http://unfccc.int/kyoto_protocol/mechanisms/
4	http://www.epa.gov/
5	http://ecometrica.com/assets/whatis_acarbonfootprint_summary.pdf

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

⊟-CHALK & TALK	□ STUD. ASSIGNMENT	□ WEB RESOURCES
□LCD/SMART BOARDS	□STUD. SEMINARS	

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS	□STUD. SEMINARS	TESTS/MODEL	□ UNIV.
		EXAMS	EXAMINATION
□ STUD. LAB	⊟ STUD. VIVA	HINI/MAJOR	⊟ -CERTIFICATIONS
PRACTICES		PROJECTS	
□ ADD ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES	□ STUDENT FEEDBACK ON FACULTY
(BY FEEDBACK, ONCE)	

□ASSESSMENT OF MINI/MAJOR PROJECTS	□ OTHERS
BY EXT. EXPERTS	

Prepared by

Approved by

Ms. Mariya Vincent Dr. Suma H

Dr. Rithu James (HoD)

COURSE PLAN

No	Торіс	Number of Lectures
1	Module 1 (5	
	Hours)	
1.1	Introduction, concept, evolution of the concept	1
1.2	Social, environmental and economic sustainability concepts	1
1.3	Sustainable development, Nexus between Technology and Sustainable development	1
1.4	Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs)	1
1.5	Clean Development Mechanism (CDM)	1
2	Module 2 (6	
	Hours)	
2.1	Air Pollution and its effects	1
2.2	Water pollution and its sources	1
2.3	Zero waste concept and 3 R concepts in solid waste management	1
2.4	Greenhouse effect, Global warming, Climate change, Ozone layer depletion	1
2.5	Carbon credits, carbon trading and carbon foot print.	1
2.6	Legal provisions for environmental protection.	1
3	Module 3 (5	
	Hours)	
3.1	Environmental management standards	1
3.2	ISO 14001:2015 frame work and benefits	1
3.3	Scope and Goal of Life Cycle Analysis (LCA)	1
3.4	Circular economy, Bio-mimicking	1
3.5	Environment Impact Assessment (EIA)	1
4	Module 4 (4 Hours)	
4.1	Basic concepts of Conventional and non-conventional energy	1
4.2	General idea about solar energy, Fuel cells	1
4.3	Wind energy, Small hydro plants, bio-fuels	1
4.4	Energy derived from oceans and Geothermal energy	1
5	Module 5 (4	
	Hours)	
5.1	Basic concept of sustainable habitat	1
5.2	Methods for increasing energy efficiency of buildings	1

MODEL QUESTION BANK

Module 1

- Illustrate the three-pillar model of sustainability.
- What are the three levels with which you approach a sustainable issue? Explain with an example.
- Comment on the challenges for sustainable development in our country and suggest a way to overcome the same.
- What is the main motto of the Clean Development Mechanism (CDM)? Relate the same to the suggestions of Kyoto protocol.
- How would you take initiatives in conducting your college fest, so that it remains an environmentally sustainable one?
- Justify, giving one reason, why sustainability is an essential component in any developmental programmes and projects.
- Comment on any one challenge experienced in the implementation of sustainable development principles.
- Write a short note on MDGs
- Write a short note on SDGs

Module 2

- Apply 3R concept to mineral water bottles.
- Distinguish between carbon credits and carbon trading.
- List out any two methods by which carbon foot print can be reduced.
- Explain the significance of carbon footprint. Suggest some methods for reducing the carbon footprint of your house.
- A hospital is situated in the middle of a densely populated area. What are the possible environmental impacts that can happen to the surroundings? Suggest any methods for reducing these impacts.
- What do you mean by greenhouse effect? List any three GHGs.
- Briefly describe zero waste concept with a suitable example.
- Using any one example illustrate the concept of 3R's in solid waste management.
- "No Challenge poses a greater threat to future generation than climate change"-Barack Obama. Enumerate the recent effects of climate change.

Module 3

- Can we use life cycle analysis (LCA) as a tool for profit making? How?
- Conduct a sample life cycle analysis of any product given below Plastic pet bottles, lead acid batteries or hollow bricks.
- Life cycle assessment takes the concept of "cradle to grave". Explain this with any example
- List any 5 products developed bases on bio mimics.
- Discuss the benefits of doing an EIA study.

- Write a short note on EMS. Briefly indicate the steps involved in introducing EMS in an industry.
- What is Bio-mimicking?
- List out the procedures of EIA followed in India.
- With a suitable example, explain the principles of industrial symbiosis
- What is LCA? Illustrate how LCA can be effectively used in the environmental management of industrial production systems.

Module 4

- Suggest two renewable energy sources for our state and validate your suggestion
- Explain different method using which we can utilize solar energy.
- Differentiate between conventional and nonconventional energy sources. Which will you support? Why?
- "We can create a more Sustainable, cleaner and safer world by making wiser energy choices." Evaluate the importance of the quote and discuss on the various Non-Conventional Energy Sources
- What are limitations in harnessing the tidal energy?
- Being an agriculture country, what is the scope of using bio-fuels for meeting the energy needs of India?
- What is the scope of using geothermal energy as a non-renewable energy source?
- Give suggestions to reduce the power consumption at the place where you are studying, enumerating the unwanted/ wastage of power
- What are the prospects of using Biofuel as a renewable energy source?

Module 5

- Take an example of green building. How it differs from a conventional building. Compare in any six aspects
- Transportation sector is the major source of pollution in the cities. What are the factors pointing to this statement? Suggest some methods to deal with traffic issues in urban areas.
- Discuss any three benefits of green engineering.
- What are the basic features of a sustainable city?
- Does green building more expensive than traditional building? Why?
- Enumerate the basic features of a sustainable habitat

100001/EC322S

SCIENTIFIC COMPUTING LAB

COURSE INFORMATION SHEET

PROGRAMME: ELECTRONICS &	DEGREE: BTECH
COMMUNICATION	
COURSE: SCIENTIFIC COMPUTING LAB	SEMESTER: 3 CREDITS: 2
COURSE CODE: 100001/EC322S	COURSE TYPE: CORE
REGULATION: Autonomous	
COURSE AREA/DOMAIN: ELECTRONICS	CONTACT HOURS: 0+0+3 (LAB)
	hours/Week.
CORRESPONDING THEORY COURSE CODE	THEORY COURSE NAME:NIL
(IF ANY): NIL	

SYLLABUS:

Sl.NO	DETAILS	HOURS
1	Familarization of the Computing Tool	3
2	Familarization of Scientific Computing	3
3	Realization of Arrays and Matrices	3
4	Numerical Differentiation and Integration	3
5	Solution of Ordinary Differential Equations	3
6	Simple Data Visualization	3
7	Simple Data Analysis with Spreadsheets	3
8	Convergence of Fourier Series	3
9	Coin Toss and the Level Crossing Problem	3
TOTAI	L HOURS	27

TEXT/REFERENCE BOOKS:

1DIGITAL SIGNAL PROCESSING USING MATLAB by Vinay K. Lngle, John G. Proakis.2Digital Signal Processing Laboratory Using MATLAB by Sanjit K Mitra.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
101908/MA100A	Linear Algebra and Calculus	Theory	1
100908/MA200A	Vector Calculus, Differential	Theory	2
	Equations and Transforms		

COURSE OBJECTIVES:

1	To translate the mathematical concepts into system design.
2	To familiarize with computing tools such as Matlab and Python
3	The experiments will lay the foundation for future labs such as DSP lab.

COURSE OUTCOMES:

SNO	DESCRIPTION	Bloom Taxonomy
		Level
1	Describe the needs and requirements of scientific computing and to familiarize one programming language for scientific computing and data visualization	Understand (Level 2)

		Understand
2	Approximate an array/matrix with matrix decomposition.	and Analyze (Level 2
		& 4)
		Analyze and Apply
3	Implement numerical integration and differentiation.	(Level 4 & 6)
	Solve ordinary differential equations for engineering applications	Analyze and Apply
4		(Level 4 & 6)
	Compute with exported data from instruments	Analyze & Apply
5		(Level 4 & 6)
	Realize how periodic functions are constituted by sinusoids	Analyze and Apply
6		(Level 4 & 6)
	Simulate random processes and understand their statistics.	Analyze and Apply
7		(Level 4 & 6)

CO – PO mapping

Programme Outcomes (POs)										Programme Specific				
														0.5)
PO	PO2	PO3	PO	PO5	PO	PO7	PO	PO9	PO1	PO11	PO1	PSO1	PSO2	PSO3
1			4		6		8		0		2			
3	2												2	
2	1			1									2	
	2			1									2	
		<u> </u>			<u> </u>		<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>
						PO PO2 PO3 PO PO5 PO	PO PO2 PO3 PO PO5 PO PO7	PO PO2 PO3 PO PO5 PO PO7 PO	PO PO2 PO3 PO PO5 PO PO7 PO PO9	PO PO2 PO3 PO PO5 PO PO7 PO PO9 PO1	PO PO2 PO3 PO PO5 PO PO7 PO PO9 PO1 PO11	PO PO2 PO3 PO PO5 PO PO7 PO PO9 PO1 PO11 PO1	PO PO2 PO3 PO PO5 PO PO7 PO PO9 PO1 PO11 PO1 PSO1	PO PO2 PO3 PO PO5 PO PO7 PO PO9 PO1 PO11 PO1 PSO1 PSO2

4 2 3 2 1 1

5		3		2					1	
6	1	2		2					1	
7	2			2				1	1	

Justification

Mapping	Justification							
CO1-PO1	Understanding scientific computing tool for the solution of complex computational problems							
CO1-PO2	Analyzing the solutions for basic computation problems							
CO2-PO1	Understanding matrix decomposition using scientific computing tool							
CO2-PO2	Analyzing different matrix operations							
CO2-PO5	Using a modern scientific computing tool for matrix operations							
CO3-PO2	Analyzing and implementing numerical integration and differentiation.							
CO3-PO5	Using a modern scientific computing tool for numerical integration and differentiation							
CO4-PO1	Understanding the methods of solving ordinary differential equations							
CO4-PO2	Analyzing differential equations and finding solutions							
CO.4-PO5	Using a modern scientific computing tool for solving differential equations							
CO5-PO2	Analyzing exported data from instruments							
CO5-PO5	Using a modern scientific computing tool for analyzing exported data from instruments							
CO6-PO1	Understanding how periodic functions are constituted by sinusoids							
CO6-PO2	Analyzing periodic functions							
CO6-PO5	Using a modern scientific computing tool for analyzing periodic functions							

CO7-PO1	Understand random processes and their statistics
CO7-PO5	Using a modern scientific computing tool for analyzing random processes and their statistics.
CO1-PSO2	Knowledge of scientific computing tool
CO2-PSO2	Apply the knowledge of scientific computing tool for matrix decomposition
CO3-PSO2	Apply the knowledge of scientific computing tool for numerical integration and differentiation
CO4-PSO2	Apply the knowledge of scientific computing tool for solving ordinary differential equations
CO5-PSO2	Apply the knowledge of scientific computing tool for computing with exported data from instruments
CO6-PSO2	Apply the knowledge of scientific computing tool to realize periodic functions are constituted by sinusoids
CO7-PSO1	Knowledge of simulating random processes and understanding their statistics
CO7-PSO2	Apply the knowledge of scientific computing tool to simulate and understand random process.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO			RELEVAN CE WITH POs	
	Solution of representative problems encountered in scientific computation.	Assignments		

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	DESCRIPTION	PROPOSED	RELEVANCE WITH	RELEVANCE WITH
		ACTIONS	POs	PSOs
	Solve differential equations for diffusion current in solid state	Assignment		
	device physics			

WEB SOURCE REFERENCES:

1	http://www.mathworks.com

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	STUD. ASSIGNMENT	UWEB RESOURCES	LCD/SMART
			BOARDS
STUD. SEMINARS	□ ADD-ON COURSES □		

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS □	STUD. SEMINARS	TESTS/MODEL	UNIV.

		EXAMS 🗆	EXAMINATION
STUD. LAB	🗆 STUD. VIVA 🗆	D MINI/MAJOR	CERTIFICATIONS
PRACTICES 🗆		PROJECTS	
□ ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE) \Box	(TWICE)
ASSESSMENT OF MINI/MAJOR PROJECTS BY	□ OTHERS
EXT. EXPERTS	

Prepared by

Approved by

Dr. Rithu James

Ms. Swapna Davis

Dr. Simi Zerine Sleeba

Ms.Mariya Vincent

COURSE PLAN

SI.NO	DETAILS	HOURS
1	Familarization of the Computing Tool	3
2	Familarization of Scientific Computing	3
3	Realization of Arrays and Matrices	3
4	Numerical Differentiation and Integration	3
5	Solution of Ordinary Differential Equations	3
6	Simple Data Visualization	3
7	Simple Data Analysis with Spreadsheets	3
8	Convergence of Fourier Series	3
9	Coin Toss and the Level Crossing Problem	3
TOTAI	L HOURS	27

100001/EC322T

LOGIC DESIGN LAB

COURSE INFORMATION SHEET

PROGRAMME: Electronics & Communication	DEGREE: B.TECH (Autonomous)
Engineering	
COURSE: Logic Design Lab	SEMESTER: 3 CREDITS: 2
COURSE CODE: 100902/EC322T	COURSE TYPE: CORE
REGULATION: 2019	
COURSE AREA/DOMAIN: Digital Electronics	CONTACT HOURS: 3 hrs.
CORRESPONDING THEORY COURSE CODE (IF	THEORY COURSE NAME: Logic Circuit
ANY):100902/EC 300C	Design

SYLLABUS:

Unit	Details	Hrs
	It is compulsory to conduct a minimum of 5 experiments from Part A and a minimum	
	of 5 experiments from Part B.	
	Part A (Any 5)	
	The following experiments can be conducted on breadboard or trainer kits.	
1	Realization of functions using basic and universal gates (SOP and POS forms).	3 hr.
	Design and Realization of half /full adder and subtractor using basic gates and	
	universal	
2	gates.	3 hr.
3	4-bit adder/subtractor and BCD adder using 7483.	3 hr.
4	Study of Flip Flops: S-R, D, T, JK and Master Slave JK FF using NAND gates.	3 hr.

5		
	Asynchronous Counter:3 bit up/down counter	3 hr.
6	Asynchronous Counter: Realization of Mod N counter	3 hr.
7	Synchronous Counter: Realization of 4-bit up/down counter.	3 hr.
8	Synchronous Counter: Realization of Mod-N counters.	3 hr.
9	Ring counter and Johnson Counter. (Using FF & 7495).	3 hr.
10	Realization of counters using IC's (7490, 7492, 7493).	3 hr.
11	Multiplexers and De-multiplexers using gates and ICs. (74150, 74154)	3 hr.
12	Realization of combinational circuits using MUX & DEMUX.	3 hr.
13	Random Sequence generator using LFSR.	3 hr.
	PART B (Any 5)	
-	imulation, synthesis and place and route, such as <i>TinyFPGA</i> or <i>Lattice iCEstick</i> can be usen software tools such as <i>yosis</i> (for simulation and synthesis) and <i>arachne</i> (for place and r be used. The experiments will lay the foundation for digital design with FPGA with the	oute)
may	• •	oute)
may obje	n software tools such as <i>yosis</i> (for simulation and synthesis) and <i>arachne</i> (for place and r be used. The experiments will lay the foundation for digital design with FPGA with the ctive of increased employability.	oute)
may	n software tools such as <i>yosis</i> (for simulation and synthesis) and <i>arachne</i> (for place and r be used. The experiments will lay the foundation for digital design with FPGA with the ctive of increased employability.	oute)
may obje	 a software tools such as <i>yosis</i> (for simulation and synthesis) and <i>arachne</i> (for place and r be used. The experiments will lay the foundation for digital design with FPGA with the ctive of increased employability. Experiment 1. Realization of Logic Gates and Familiarization of FPGAs (a) Familiarization of a small FPGA bboard and its ports and interface. 	oute)
may obje	 a software tools such as <i>yosis</i> (for simulation and synthesis) and <i>arachne</i> (for place and r be used. The experiments will lay the foundation for digital design with FPGA with the ctive of increased employability. Experiment 1. Realization of Logic Gates and Familiarization of FPGAs (a) Familiarization of a small FPGA bboard and its ports and interface. (b) Create the .pcf files for your FPGA board. 	oute)
may obje	 a software tools such as <i>yosis</i> (for simulation and synthesis) and <i>arachne</i> (for place and r be used. The experiments will lay the foundation for digital design with FPGA with the ctive of increased employability. Experiment 1. Realization of Logic Gates and Familiarization of FPGAs (a) Familiarization of a small FPGA bboard and its ports and interface. (b) Create the .pcf files for your FPGA board. (c) Familiarization of the basic syntax of Verilog 	oute)
may obje	 a software tools such as <i>yosis</i> (for simulation and synthesis) and <i>arachne</i> (for place and r be used. The experiments will lay the foundation for digital design with FPGA with the ctive of increased employability. Experiment 1. Realization of Logic Gates and Familiarization of FPGAs (a) Familiarization of a small FPGA bboard and its ports and interface. (b) Create the .pcf files for your FPGA board. 	oute)

2	Experiement 2: Adders in Verilog	3 hr.
	 (a) Development of verilog modules for half adder in 3 modeling styles (dataflow/structural/ 	
	behavioural).	
	(b) Development of verilog modules for full adder in structural modeling using half adder.	
3	Experiement 3: Mux and Demux in Verilog	
	(a) Development of verilog modules for a 4x1 MUX.	
	(b) Development of verilog modules for a 1x4 DEMUX.	
4	Experiement 4: Flipflops and coutners	3 hr.
	(a) Development of verilog modules for SR, JK and D flipflops.	
	(b) Development of verilog modules for a binary decade/Johnson/Ring counters	
5	Experiment 5. Multiplexer and Logic Implementation in FPGA	3 hr.
	(a) Make a gate level design of an 8 : 1 multiplexer, write to FPGA and test its functionality.	
	(b) Use the above module to realize the logic function $f(A, B, C) = \sum m(0, 1, 3, 7)$ and test it.	
	(c) Use the same 8 : 1 multiplexer to realize the logic function f (A, B, C, D) = $\sum m(0, 1, 3, 7, 10, 12)$ by partitioning the truth table properly and test it.	
6	Experiment 6. Flip-Flops and their Conversion in FPGA	3 hr.
	(a) Make gate level designs of J-K, J-K master-slave, T and D flip-flops, implement and test them on the FPGA board.	
	(b) Implement and test the conversions such as T to D, D to T, J-K to T and J-K to D in FPGA	
7	Experiment 7: Asynchronous and Synchronous Counters	3 hr.

	(a) Make a design of a 4-bit up down ripple counter using T-flip-lops in the previous experiment, implement and test them on the FPGA board.	
	(b) Make a design of a 4-bit up down synchronous counter using T-flip-lops in the previous experiment, implement and test them on the FPGAboard.	
8	Experiment 8: Universal Shift Register in FPGA	3 hr.
	(a) Make a design of a 4-bit universal shift register using D-flip-flops in the previous	
	experiment, implement and test them on the FPGA board.	
	(b) Implement ring and Johnson counters with it.	
9	Experiment 9. BCD to Seven Segment Decoder in FPGA	3 hr.
	(a) Make a gate level design of a seven segment decoder, write to FPGA and test its	
	functionality.	
	(b) Test it with switches and seven segment display. Use ouput ports for connection to the display.	
	Total hrs.	

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
1	Mano M. M., Digital Logic & Computer Design, 4/e, Pearson Education, 2013.
2	Floyd T. L., Digital Fundamentals, 10/e, Pearson Education, 2009.
3	M. Morris Mano, Computer System Architecture, 3/e, Pearson Education, 2007. Harris D. M. and, S. L. Harris, Digital Design and Computer Architecture, 2/e, Morgan Kaufmann Publishers, 2013
4	Tokheim R. L., Digital Electronics Principles and Applications, 7/e, Tata McGraw Hill, 2007.
5	Mano M. M. and M. D Ciletti, Digital Design, 4/e, Pearson Education, 2008.

6	Rajaraman V. and T. Radhakrishnan, An Introduction to Digital Computer Design, 5/e,Prentice Hall India Private Limited, 2012.	
7	Samir Palnikar"Verilog HDL: A Guide to Digital Design and Syntheis", Sunsoft	
	Press	

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
100902/EC322T	Logic Circuit Design	To impart an understanding of the basic concepts of Boolean algebra, digital systems which will help them to design and implement different types of practically used sequential circuits using Hardware Description Language.	3 rd

COURSE OBJECTIVES:

1	To familiarize students with the Digital Logic Design through the implementation of Logic Circuits using ICs of basic logic gates (ii)
2	To familiarize students with the HDL based Digital Design Flow.

COURSE OUTCOMES:

Sl. No	DESCRIPTION
1	Design and demonstrate the functioning of various combinational and sequential circuits using
	ICs
2	Apply an industry compatible hardware description language to implement digital circuits
3	Implement digital circuits on FPGA boards and connect external hardware to the boards
4	Function effectively as an individual and in a team to accomplish the given task

CO-PO-PSO MAPPING

CO No.	Pro	ogramr	ne Ou	tcome	s (POs)							Programme-specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3						3			3	3	2	3
2	3	1	1	3	3				3			3	3	2	3
3	3	1	1	3	3				3			3	3	2	3
4	3	3	3		3				3			3	1	2	1
ECL 203	3	2	2	3	3				3			3	2.5	2	2.5

JUSTIFICATION FOR THE CORRELATION LEVEL ASSIGNED IN EACH CELL OF THE TABLE

	PO1	PO2	PO3	PO4	PO5	PO9	PO10	PO12	PSO1	PSO2	PSO3
	demonstrate	1	solutions			Helps students		students to		s ability	
	functioning	-	for various combinati			function effectivel y as an		independen		to apply	carry out
		demonstrati ng functioning	sequential			individual , and as a member		learning in		knowle	their design of various combinationa
CO1	using ICs to	combinatio	using ICs			or leader in diverse		context of	testing		sequential
		nal and sequential circuits				teams, & in multidisci		technologi cal change.	digital	c or research career	circuits using ICs .
	problems.					plinary settings.				with creativit	
										y, commit ment	
										and	

		I	1		ſ	1		[
									social	
									conscio	
									usness.	
	A 1' ('	TT 1 /	D '	A 1'	<u> </u>	TT 1	D	TT 1	т	
	Application	-	Design		Creat	_	Prepare			Demonstrate
	-	analyze	solutions		e,	students	students to		-	a sense of
	^	complex	for	n of		function	00	students		professional
	HDL to	Engineering	^			effectivel	independen			ethics to
	-	problems	Engineeri	in the		y as an				carry out
	-	reaching	ng			individual	U		their	their
	circuits	substantiate	-	n of	•	, and as a	learning in		knowle	professional
	· · · · ·	d	using	exp.		member			-	responsibiliti
l		conclusions	industry	and	ques	or leader				es in the field
	complex	using	compatibl	synth	in	in diverse	context of	compati	industri	of electronics
	engineering	engineering	e HDL	esis	HDL	teams, &	technologi	ble	al,	such as
	problems.	science	implemen	of	to	in	cal change.	hardwar	academi	implementin
			tation of	infor	predic	multidisci		e	c or	g digital
			digital	matio	t and	plinary		descript	research	circuits using
CO2			circuits	n to	model	settings.		ion	career	industry
				provi	compl			languag	with	compatible
				de	ex			e to	creativit	HDL.
				valid	Engin			implem	у,	
				concl	eering			ent	commit	
				usion	activit			digital	ment	
				s	ies			circuits	and	
					with				social	
					an				conscio	
					under				usness.	
					standi					
					ng of					
					its					
					limita					
					tions.					
	U	Implementa	Design	Appli	Creat	Helps	 Prepare	-	Improve	<u> </u>
	Implementa	tion of	solutions	catio	e,	students	students to	s the	s ability	students to
003	tion of	digital	for	n of	select,	function	engage in	ability	of	Demonstrate
CO3	digital	circuits on	complex	FPG	and	effectivel	independen	of	students	a sense of
	circuits on	FPGA	Engineeri	А	apply	y as an	t and life-	students	to apply	professional
	FPGA	board Helps	ng	board	appro	individual	long	to	their	ethics to
	boards and	to Analyze	problems	s in	priate	, and as a	 learning in	implem	knowle	carry out

Semester III , Course Hand-out

		_		1.				1	1.	
		-	using	the		member	the	ent	dge and	
		Engineering		desig	-	or leader	broadest	digital		professional
	hardware to	problems	boards		in	in diverse	context of	circuits		responsibiliti
	the boards			exp.	FPGA	teams, &	technologi	on	al,	es
	helps the			and	to	in	cal change.	FPGA	academi	
	students to			synth	^	multidisci		boards	c or	
	solve			esis	t and	plinary		and	research	
	complex			of	model	settings.		connect	career	
	engineering			infor	compl			external	with	
	problems.			matio	ex			hardwar	creativit	
				n to	Engin			e to the	у,	
				provi	eering			boards	commit	
				de	activit				ment	
				valid	ies				and	
				concl	with				social	
				usion	an				conscio	
				s	under				usness.	
					standi					
					ng of					
					its					
					limita					
					tions.					
	Encincomina	A polyais of	Decian		Use	Halma	Duanana	Domono	Improve	Halma
		Analysis of	solutions		of	Helps students	Prepare students to		-	students to
	Ũ	1				function			s addity	
	helps students to	Engineering	U U			effectivel	00	their		Demonstrate
		problems help the	complex Engineeri		n toolo		independen t and life-			
			Engineeri			y as an individual		-	to appry their	professional ethics to
	5		ng		help the	, and as a	long learning in	-		
		complete	problems as a team				-		knowle	carry out
COA		U				member or leader		5	dge and	professional
		task	or an individual			in diverse		U		responsibiliti
	team to		marviauai						al,	es to
	accomplish		•			teams, &	cal change.			
	the given				select	multidisci	cal change.			complete any task.
	task				and			an	c or	
					~~ -	plinary			research	
					-	settings.		al	career	
					ues to				with	
					compl				creativit	

ete	у,
the	commit
given	ment
task	and
as an	social
indivi	conscio
dual	usness.
or	
team	

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl No	DESCRIPTION	PROPOSED ACTIONS	PO MAPPING
1	Self starting Counters, Code Converters	Assignment	1,2,3,4,5,9

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl	DESCRIPTION	РО
No		MAPPING
1	Advanced design level questions solving skills by lab work to have a wider scope of subject beyond syllabus.	1,2,3,4,5

WEB SOURCE REFERENCES:

1	http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/digital_circuit/frame/
2	http://www.electronics-tutorials.ws/logic/logic_1.html

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	□ STUD. ASSIGNMENT	UWEB RESOURCES	
□LCD/SMART BOARDS	□STUD. SEMINARS	□ ADD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS	□STUD. SEMINARS	□ TESTS/MODEL	\Box UNIV.
		EXAMS	EXAMINATION
□ STUD. LAB	🗆 STUD. VIVA	□ MINI/MAJOR	□ CERTIFICATIONS
PRACTICES		PROJECTS	
□ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	□ STUDENT FEEDBACK ON FACULTY
□ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	□ OTHERS

Prepared by

Dr. Sabna N

Mr. Rony Antony P

Ms. Anila Kuriakose

Approved by

Dr. Rithu James

(HoD)

COURSE PLAN

Unit	Details	Hrs
	It is compulsory to conduct a minimum of 5 experiments from Part A and a minimum of 5 experiments from Part B.	
	Part A (Any 5)	
	The following experiments can be conducted on breadboard or trainer kits.	
1	Realization of functions using basic and universal gates (SOP and POS forms).	3 hr.
	Design and Realization of half /full adder and subtractor using basic gates and universal	
2	gates.	3 hr.
3	4-bit adder/subtractor and BCD adder using 7483.	3 hr.
4	Study of Flip Flops: S-R, D, T, JK and Master Slave JK FF using NAND gates.	3 hr.
5	Asynchronous Counter:3 bit up/down counter	3 hr.
6	Asynchronous Counter: Realization of Mod N counter	3 hr.
7	Synchronous Counter: Realization of 4-bit up/down counter.	3 hr.
8	Synchronous Counter: Realization of Mod-N counters.	3 hr.
9	Ring counter and Johnson Counter. (Using FF & 7495).	3 hr.
10	Realization of counters using IC's (7490, 7492, 7493).	3 hr.
11	Multiplexers and De-multiplexers using gates and ICs. (74150, 74154)	3 hr.
12	Realization of combinational circuits using MUX & DEMUX.	3 hr.
13	Random Sequence generator using LFSR.	3 hr.
	PART B (Any 5)	

The following experiments aim at training the students in digital circuit design with verilog and implementation in small FPGAs. Small, low cost FPGAs, that can be driven by open tools for simulation, synthesis and place and route, such as *TinyFPGA* or *Lattice iCEstick* can be used. Open software tools such as *yosis* (for simulation and synthesis) and *arachne* (for place and route) may be used. The experiments will lay the foundation for digital design with FPGA with the objective of increased employability.

1	Experiment 1. Realization of Logic Gates and Familiarization of FPGAs	3 hr.
	(a) Familiarization of a small FPGA bboard and its ports and interface.	
	(b) Create the .pcf files for your FPGA board.	
	(c) Familiarization of the basic syntax of Verilog	
	(d) Development of verilog modules for basic gates, synthesis and implementation in the above FPGA to verify the truth tables.	
	(e) Verify the universality and non associativity of NAND and NOR gates by uploading the corresponding verilog files to the FPGA boards.	
2	Experiement 2: Adders in Verilog	3 hr.
	(a) Development of verilog modules for half adder in 3 modeling styles (dataflow/structural/	
	behavioural).	
	(b) Development of verilog modules for full adder in structural modeling using half adder.	
3	Experiement 3: Mux and Demux in Verilog	
	(a) Development of verilog modules for a 4x1 MUX.	
	(b) Development of verilog modules for a 1x4 DEMUX.	
4	Experiement 4: Flipflops and coutners	3 hr.
	(a) Development of verilog modules for SR, JK and D flipflops.	

1		i i
	(b) Development of verilog modules for a binary decade/Johnson/Ring counters	
5	Experiment 5. Multiplexer and Logic Implementation in FPGA	3 hr.
	(a) Make a gate level design of an 8 : 1 multiplexer, write to FPGA and test its	
	functionality.	
	(b) Use the above module to realize the logic function $f(A, B, C) = \sum m(0, 1, 3, 7)$ and test it.	
	(c) Use the same 8 : 1 multiplexer to realize the logic function $f(A, B, C, D) =$	
	$\sum m(0, 1, 3, 7, 10, 12)$ by partitioning the truth table properly and test it.	
6	Experiment 6. Flip-Flops and their Conversion in FPGA	3 hr.
	(a) Make gate level designs of J-K, J-K master-slave, T and D flip-flops, implement and test them on the FPGA board.	
	(b) Implement and test the conversions such as T to D, D to T, J-K to T and J-K to D in FPGA	
7	Experiment 7: Asynchronous and Synchronous Counters	3 hr.
	(a) Make a design of a 4-bit up down ripple counter using T-flip-lops in the previous experiment, implement and test them on the FPGA board.	
	(b) Make a design of a 4-bit up down synchronous counter using T-flip-lops in the previous experiment, implement and test them on the FPGAboard.	
8	Experiment 8: Universal Shift Register in FPGA	3 hr.
	(a) Make a design of a 4-bit universal shift register using D-flip-flops in the previous	
	experiment, implement and test them on the FPGA board.	
	(b) Implement ring and Johnson counters with it.	
9	Experiment 9. BCD to Seven Segment Decoder in FPGA	3 hr.
	(a) Make a gate level design of a seven segment decoder, write to FPGA and test its	
	functionality.	

(b) Test it with switches and seven segment display. Use ouput ports for connection to the display.