

COURSE HAND-OUT

B.TECH. - SEMESTER VIII

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RAJAGIRI SCHOOL OF ENGINEERING AND TECHNOLOGY (RSET)

VISION

TO EVOLVE INTO A PREMIER TECHNOLOGICAL AND RESEARCH INSTITUTION, MOULDING EMINENT PROFESSIONALS WITH CREATIVE MINDS, INNOVATIVE IDEAS AND SOUND PRACTICAL SKILL, AND TO SHAPE A FUTURE WHERE TECHNOLOGY WORKS FOR THE ENRICHMENT OF MANKIND

MISSION

TO IMPART STATE-OF-THE-ART KNOWLEDGE TO INDIVIDUALS IN VARIOUS TECHNOLOGICAL DISCIPLINES AND TO INCULCATE IN THEM A HIGH DEGREE OF SOCIAL CONSCIOUSNESS AND HUMAN VALUES, THEREBY ENABLING THEM TO FACE THE CHALLENGES OF LIFE WITH COURAGE AND CONVICTION

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (CSE), RSET

VISION

TO BECOME A CENTRE OF EXCELLENCE IN COMPUTER SCIENCE & ENGINEERING, MOULDING PROFESSIONALS CATERING TO THE RESEARCH AND PROFESSIONAL NEEDS OF NATIONAL AND INTERNATIONAL ORGANIZATIONS.

MISSION

TO INSPIRE AND NURTURE STUDENTS, WITH UP-TO-DATE KNOWLEDGE IN COMPUTER SCIENCE & ENGINEERING, ETHICS, TEAM SPIRIT, LEADERSHIP ABILITIES, INNOVATION AND CREATIVITY TO COME OUT WITH SOLUTIONS MEETING THE SOCIETAL NEEDS.

B.TECH PROGRAMME

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- Graduates shall have up-to-date knowledge in Computer Science & Engineering along with interdisciplinary and broad knowledge on mathematics, science, management and allied engineering to become computer professionals, scientists and researchers.
- **2.** Graduates shall excel in analysing, designing and solving engineering problems and have life-long learning skills, to develop computer applications and systems, resulting in the betterment of the society.
- **3.** Graduates shall nurture team spirit, ethics, social values, skills on communication and leadership, enabling them to become leaders, entrepreneurs and social reformers.

PROGRAMME OUTCOMES (POs)

Graduates will be able to achieve

- **a.** An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modelling and design of computer-based systems.
- **b.** An ability to identify, analyse, formulate and solve technical problems by applying principles of computing and mathematics relevant to the problem.
- **c.** An ability to define the computing requirements for a technical problem and to design, implement and evaluate a computer-based system, process or program to meet desired needs.
- **d.** An ability to learn current techniques, skills and modern engineering tools necessary for computing practice.
- e. An ability to carry out experiments, analyse results and to make necessary conclusions.
- **f.** An ability to take up multidisciplinary projects and to carry out it as per industry standards.
- **g.** An ability to take up research problems and apply computer science principles to solve them leading to publications.
- **h.** An ability to understand and apply engineering solutions in a global and social context.
- **i.** An ability to understand and practice professional, ethical, legal, and social responsibilities as a matured citizen.
- **j.** An ability to communicate effectively, both written and oral, with a range of audiences.

- **k.** An ability to engage in life-long learning and to engage in continuing professional development.
- **I.** An ability to cultivate team spirit and to develop leadership skills thereby moulding future entrepreneurs.

INDEX

SCHEME: B.TECH. 8TH SEMESTER	6
CS402 Data Mining and Ware Housing	7
COURSE INFORMATION SHEET	7
CS404 Embedded Systems	13
COURSE INFORMATION SHEET	13
CS462 Fuzzy Set Theory and Applications	20
COURSE INFORMATION SHEET	20
CS464 Artificial Intelligence	25
COURSE INFORMATION SHEET	25
CS468 Cloud Computing	29
COURSE INFORMATION SHEET	29
CS472 Principles of Information Security	33
COURSE INFORMATION SHEET	33
CS484 Computer Graphics	38
COURSE INFORMATION SHEET	38
CS492 Project	45
COURSE INFORMATION SHEET	45

SCHEME: B.TECH. 8TH SEMESTER

(Computer Science & Engineering)

Kerala Technological University Revised Scheme for B.Tech. Syllabus Revision 2015

Course Code	Course Name	L-T-P	Credits	Exam Slot
CS402	Data Mining and	3-0-0	3	А
	Ware Housing			
CS404	Embedded 3-0-0		3	В
	Systems			
	Elective 4	3-0-0	3	С
	Elective 5 (Non	3-0-0	3	D
	Departmental)			
CS492	Project	0-1-4	6	S

Total Credits = 18 Hours: 30

Cumulative Credits= 180

CS402 Data Mining and Ware Housing

COURSE INFORMATION SHEET

PROGRAMME: COMPUTER SCIENCE AND ENGINEERING	DEGREE: BTECH (JANUARY- MAY 2019)
COURSE: DATA MINING AND WAREHOUSING	SEMESTER: VIII CREDITS: 3
COURSE CODE: CS402	COURSE TYPE:CORE
REGULATION:2016	
COURSEAREA/DOMAIN: DATA SCIENCE	CONTACT HOURS: 3 hours/week.
CORRESPONDING LAB COURSE CODE (IF ANY):NIL	LAB COURSE NAME:NIL

SYLLABUS:

MODULE	DETAILS	HOURS
Ι	Data Mining:- Concepts and Applications, Data Mining Stages, Data Mining Models, Data Warehousing (DWH) and On-Line Analytical Processing (OLAP), Need for Data Warehousing, Challenges, Application of Data Mining	6
	Principles, OLTP Vs DWH, Applications of DWH	
II	Data Preprocessing: Data Preprocessing Concepts, Data Cleaning, Data integration and transformation, Data Reduction, Discretization and concept hierarchy.	6
III	Classification Models: Introduction to Classification and Prediction, Issues regarding classification and prediction, Decision Tree- ID3, C4.5, Naive Bayes Classifier.	6
IV	Rule based classification- 1R. Neural Networks-Back propagation. Support Vector Machines, Lazy Learners-K Nearest Neighbor Classifier. Accuracy and error Measures- evaluation. Prediction:-Linear Regression and Non-Linear Regression.	6
V	Association Rules Mining: Concepts, Apriori and FP-Growth Algorithm. Cluster Analysis: Introduction, Concepts, Types of data in cluster analysis, Categorization of clustering methods. Partitioning method: K-Means and K- Medoid Clustering.	8
VI	Hierarchical Clustering method: BIRCH. Density-Based Clustering –DBSCAN and OPTICS. Advanced Data Mining Techniques: Introduction, Web Mining- Web Content Mining, Web Structure Mining, Web Usage Mining. Text Mining. Graph mining:- Apriori based approach for mining frequent subgraphs. Social Network Analysis:- characteristics of social networks. Link mining:- Tasks and challenges.	7
	TOTAL HOURS	40

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
Т	Dunham M H, "Data Mining: Introductory and Advanced Topics", Pearson Education, New

	Delhi, 2003. 2015
Т	Jaiwei Han and Micheline Kamber, "Data Mining Concepts and Techniques", Elsevier, 2006
R	M Sudeep Elayidom, "Data Mining and Warehousing", 1st Edition, 2015, Cengage Learning India Pvt. Ltd.
R	Mehmed Kantardzic, "Data Mining Concepts, Methods and Algorithms", John Wiley and Sons, USA, 2003.
R	Pang-Ning Tan and Michael Steinbach, "Introduction to Data Mining", Addison Wesley, 2006

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM	
CS208	Database Management System	Basic knowledge of different types of databases	4	

COURSE OBJECTIVES:

1	To introduce the concepts of data Mining and its applications
2	To understand investigation of data using practical data mining tool.
3	To introduce Association Rules Mining.
4	
	To introduce advanced Data Mining

COURSE OUTCOMES:

Sl No	DESCRIPTION	Blooms' Taxonomy Level
CS402.1	Identify the key process of Data mining and Warehousing	LEVEL 1
CS402.2	Apply appropriate techniques to convert raw data into suitable format for practical data mining tasks	LEVEL 3
CS402.3	Analyze and compare various classification algorithms and apply in appropriate domain	LEVEL 4 LEVEL 5
CS402.4	Evaluate the performance of various classification methods using performance metrics	LEVEL 5
CS402.5	Make use of the concept of association rule mining in real world scenario	LEVEL 6
CS402.6	Select appropriate clustering and algorithms for various applications	LEVEL 1

CS402.7	extend data mining methods to the new domains of data	LEVEL 6
---------	---	---------

CO-PO AND CO-PSO MAPPING

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CS402.1	3	2	_	_	_	_	_	_	_	_	-	_	1	_	_
CS402.2	3	2	-	-	2	-	-	-	-	-	-		-	2	-
CS402.3	_	3	2	1	_	_	_	_	-	-	-	-	-	_	1
CS402.4	_	3		2		_	_	_	-	-	-	-	-	_	3
CS402.5	1	_	2	_	2	3	_	_	_	-	_	-	-	_	3
CS402.6	1	3	-	2	-	-	3	_	-	-	-	-	-	-	3
CS402.7	1	_	3	_	_	_	_	-	_	_	_	_	-	2	3

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SLNO	DESCRIPTION	PROPOSED	
		ACTIONS	
1	Practical sessions on R Studio	Workshops	
2	Data Visualization	Tutorial	

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/NPTEL ETC

JUSTIFICATIONS FOR CO-PO MAPPING

MAPPING	LOW/MEDIUM/HIGH	JUSTIFICATION
CS402.1 PO1	Н	The students will be able to gain a thorough understanding of the concepts of Data mining and warehousing
CS402.1 PO2	М	The students will get an insight into concepts of Data mining and warehousing and they would be able to apply these practices in data science projects.
CS402.1 PS01	L	With the knowledge of Data mining and warehousing, the students will be able to identify, analyze and design solutions for complex engineering problems in multidisciplinary areas by understanding the core principles and concepts of OOP.
CS402.2 PO1	Н	Applying appropriate techniques for data coversion, will enable the students to gain a thorough understanding of the concepts of Data mining and warehousing
CS402.2 PO2	М	The students will get an insight into various data conversion techniques and they would be able to apply these practices in real data science problems while applying appropriate techniques for data coversion,
CS402.2 PO5	М	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the

		limitations.
CS402.2 PS02	M	The ability to acquire programming efficiency by designing algorithms and applying standard practices in software project development to deliver quality software products meeting the demands of the industry, practicing the various data conversion techniques.
CS402.3 PO2	Н	Analyzing and comparing various classification algorithms and applying in appropriate domain will make students to Identify, formulate, review research literature, and analyze complex engineering problems.
CS402.3 PO3	М	Designing solutions for complex engineering problems and design system components or processes that meet the specified needs will be done while applying various classification algorithms in appropriate domain.
CS402.3 PO4	L	Students use research-based knowledge including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions by comparing various classification algorithms and applying in appropriate domain.
CS402.3 PS03	L	The students will be able to develop ability to apply the fundamentals of computer science in competitive research, by comparing various classification algorithms and applying them in appropriate domain.
CS402.4 PO2	Н	Evaluation of various classification algorithms will make students to Identify, formulate, review research literature, and analyze complex engineering problems.
CS402.4 PO4	М	Students use research-based knowledge including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions by evaluating various classification algorithms.
CS402.4 PSO3	Н	Efficient evaluation of classification methods, will enable the students to apply the fundamentals of computer science in competitive research and to develop an efficient data product or service.
CS402.5 PO1	L	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems like association rule mining in real world scenario.
CS402.5 PO3	М	The students will be able to identify, analyze and design solutions for complex engineering problems in multidisciplinary areas by implementing association rule mining in real world scenario.
CS402.5 PO5	М	Students will create, select, and apply appropriate techniques, resources, and modern engineering and IT tools to implement association rule mining in real world scenario.
CS402.5 PO6	Н	Application of Association rule mining in real world scenario, will enable the students to perform reasoning informed by the contextual knowledge.

CS402.5 PS03	Н	Application of Association rule mining in real world scenario methods,
		will enable the students to apply the fundamentals of computer science in competitive research and to develop an efficient data product or service.
CS402.6 PO1	L	Apply the knowledge of mathematics, science, engineering fundamentals, to select the various clustering algorithms for various applications.
CS402.6 PO2	Н	Selection of various clustering algorithms will make students to
		Identify, formulate, review research literature, and analyze complex engineering problems.
CS402.6 PO4	М	Students use research-based knowledge including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions by selecting appropriate clustering algorithms for various applications.
CS402.6 PO7	Н	Selection of appropriate clustering algorithms for various applications will lead the student to understand the impact of the professional engineering solutions in societal and environmental contexts.
CS402.5 PSO3	Н	Selection of appropriate clustering algorithms for various applications, will enable the students to apply the fundamentals of computer science in competitive research and to develop an efficient data product or service.
CS402.7 PO3	Н	The students will be able to identify, analyze and design solutions for complex engineering problems in multidisciplinary areas by extending data mining methods to new domains of data
CS402.7 PSO2	М	Extension of data mining methods to new domains of data will make students to Identify, formulate, review research literature, and analyze complex engineering problems.
CS402.7 PSO3	Н	Extension of data mining methods to new domains of data, will enable the students to apply the fundamentals of computer science in competitive research and to develop an efficient data product or service.

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SLNO	DESCRIPTION	PROPOSED ACTIONS	PO Mapping
1	Mining tools like weka	Tutorial	PO5
2	Mining tools in Mathlab	Tutorial	PO5
3	Open source Mining tools	Assignment	P05

WEB SOURCE REFERENCES:

1	http://en.wikipedia.org/wiki/Weka_%28machine_learning%29

2	http://www.siliconafrica.com/the-best-data-minning-tools-you-can-use-for-free-in-your-company/
3	www.weka.net.nz
4	https://www.coursera.org/learn/datasciencemathskills
5	https://onlinecourses.nptel.ac.in/noc18_cs14

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	☑ STUD. ASSIGNMENT	☑ WEB RESOURCES	☑ LCD/SMART BOARDS
☑ STUD. SEMINARS	ADD-ON COURSES		

ASSESSMENT METHODOLOGIES-DIRECT

☑ ASSIGNMENTS	🗹 STUD. SEMINARS	☑ TESTS/MODEL	☑ UNIV. EXAMINATION
		EXAMS	
□ STUD. LAB PRACTICES	□ STUD. VIVA	☑ MINI/MAJOR PROJECTS	□ CERTIFICATIONS
□ ADD-ON COURSES	□ OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY	☑ STUDENT FEEDBACK ON FACULTY (TWICE)
FEEDBACK, ONCE)	
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT.	□ OTHERS
EXPERTS	

Prepared by

Ms. Anjusree V.K/ Ms.Sreedevi T R/Mr.Ajith S (Faculty)

Approved by Dr. Sminu Izudheen (HOD)

CS404 Embedded Systems

COURSE INFORMATION SHEET

PROGRAMME: COMPUTER SCIENCE AND ENGINEERING	DEGREE: BTECH
COURSE: EMBEDDED SYSTEMS	SEMESTER: VIII CREDITS: 3
COURSE CODE: CS404 REGULATION: 2016	COURSE TYPE: CORE
COURSE AREA/DOMAIN: System Design	CONTACT HOURS: 4 hours/Week.
CORRESPONDING LAB COURSE CODE (IF ANY): N.A	LAB COURSE NAME: N.A

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	Fundamentals of Embedded Systems- complex systems and microprocessors-	6
	Embedded system design process .Specifications- architecture design of	
	embedded system design of hardware and software components- structural and	
	behavioural description	
II	Hardware Software Co-Design and Program Modelling –Fundamental Issues,	9
	Computational Models- Data Flow Graph, Control Data Flow Graph, State	
	Machine,. Sequential Model, Concurrent Model, Object oriented model, UML	
III	Design and Development of Embedded Product – Firmware Design and	6
	Development – Design Approaches, Firmware Development Languages.	
IV	Integration and Testing of Embedded Hardware and Firmware- Integration of	6
	Hardware and Firmware. Embedded System Development Environment –	
	IDEs, Cross Compilers, Disassemblers, Decompilers, Simulators, Emulators	
	and Debuggers.	
V	RTOS based Design – Basic operating system services. Interrupt handling in	9
	RTOS environment. Design Principles. Task scheduling models. How to	
	Choose an RTOS. Case Study – MicroC/OS-II.	
VI	Networks – Distributed Embedded Architectures, Networks for embedded	6
	systems, Network based design, Internet enabled systems. Embedded Product	
	Development Life Cycle – Description – Objectives -Phases – Approaches 1.	
	Recent Trends in Embedded Computing.	
	TOTAL HOURS	42

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
R	J Staunstrup and Wayne Wolf, Hardware / Software Co-Design: Principles and Practice,
	Prentice Hall.
R	Jean J. Labrose, Micro C/OS II: The Real Time Kernel, 2e, CRC Press, 2002.
-	
R	Raj Kamal, Embedded Systems: Architecture, Programming and Design, Third

Edition, McGraw Hill Education (India), 2014.

R Shibu K.V., Introduction to Embedded Systems, McGraw Hill Education (India),
 R 2009.

R

Steave Heath, Embedded System Design, Second Edition, Elsevier.

Wayne Wolf, Computers as Components-Principles of Embedded Computer System Design, Morgan Kaufmann publishers, Third edition, 2012.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
	NIL		

COURSE OBJECTIVES:

1	To introduce the technologies behind embedded computing systems.
2	To introduce and discuss various software components involved in embedded system design and development.
3.	To expose students to the recent trends in embedded system design.

COURSE OUTCOMES:

Students will be able to

CS404.1	demonstrate the role of individual components involved in a typical
	embedded system. (LEVEL 3)
CS404.2	analyze the characteristics of different computing elements and select the
	most appropriate one for an embedded system.(LEVEL 4)
CS404.3	model the operation of a given embedded system. (LEVEL 4)
CS404.4	substantiate the role of different software modules in the development of an
	embedded system.(LEVEL 4)
CS404.5	develop simple tasks to run on an RTOS. (LEVEL 5)
CS404.6	examine the latest trends prevalent in embedded system design.(LEVEL 4)

CO-PO AND CO-PSO MAPPING

\leq	PO	P0	PO	PO	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CS404.1	3	3	2	1	2	2	2	-	-	2	-	3	2	3	2
CS404.2	3	3	3	2	3	2	2	-	-	2	-	3	3	3	2
CS404.3	3	3	3	2	3	2	2	-	-	3	-	3	3	3	2
CS404.4	2	2	2	2	2	2	2	-	-	3	-	3	2	3	2
CS404.5	3	3	3	3	2	2	2	-	-	2	-	2	2	2	2
CS404.6	2	2	2	2	2	2	2	-	-	2	-	2	2	2	2

CS404(ov	3	3	2	2	2	2	2	-	-	2	-	3	2	3	2
erall level)															

JUSTIFICATIONS FOR CO-PO MAPPING

Mapping	LOW/MEDIUM/HIGH	Justification
C404.1-P01	Н	The knowledge in different embedded systems components helps
		in designing solutions for complex engineering problems.
C404.1-P02	Н	The knowledge in different embedded systems components helps
		in analysis of performance of solutions to complex problems
C404.1-P03	М	The knowledge in different embedded systems components help in
		designing solutions and analyzing its complexity.
C404.1-P04	L	This knowledge helps to identify the best embedded component.
C404.1-P05	М	This knowledge helps in identifying the best tools needed to
		develop the embedded system
C404.1-P06	М	This knowledge helps us to use effective engineering practices such
		as requirement gathering and specification etc. before choosing the
		best components for embedded system.
C404.1-P07	М	This knowledge helps as to do research in different embedded
		component effectively.
C404.1-P010	М	This knowledge helps to communicate our ideas and suggestion in
		a more effective manner to the community.
C404.1-P012	Н	These concepts are fundamental to CS and can be used in research
		and other innovative ideas.
C404.1-PS01	М	The knowledge in different components in embedded system can
		be applied to design solutions to complex engineering problems in
		multidisciplinary areas. They belong to the core concepts of CS.
C404.1-PSO2	Н	The knowledge of embedded system can be used to have products
		of industry standard
C404.1-PSO3	М	The knowledge of embedded system helps in research areas such
		as designing & developing different embedded products etc.
C404.2-P01	Н	The knowledge in different embedded systems components helps
		in designing solutions for complex engineering problems.
C404.2-P02	Н	The knowledge in different embedded systems components helps
		in analysis of performance of solutions to complex problems
C404.2-PO3	Н	The knowledge in different embedded systems components help in
		designing solutions and analyzing its complexity.
C404.2-PO4	М	This knowledge helps to identify the best embedded component.
C404.2-PO5	Н	This knowledge helps in identifying the best tools needed to
		develop the embedded system
C404.2-PO6	М	This knowledge helps us to use effective engineering practices such
		as requirement gathering and specification etc. before choosing the
		best components for embedded system.

C404.2-P07	М	This knowledge helps as to do research in different embedded component effectively.
C404.2-P010	М	This knowledge helps to communicate our ideas and suggestion in a more effective manner to the community.
C404.2-P012	Н	These concepts are fundamental to CS and can be used in research and other innovative ideas.
C404.2-PS01	Н	The knowledge in different components in embedded system can be applied to design solutions to complex engineering problems in multidisciplinary areas. They belong to the core concepts of CS.
C404.2-PSO2	Н	The knowledge of embedded system can be used to have products of industry standard
C404.2-PSO3	М	The knowledge of embedded system helps in research areas such as designing & developing different embedded products etc.
C404.3-PO1	Н	The knowledge in different embedded systems components helps in designing solutions for complex engineering problems.
C404.3-PO2	Н	The knowledge in different embedded systems components helps in analysis of performance of solutions to complex problems
C404.3-PO3	Н	The knowledge in different embedded systems components help in designing solutions and analyzing its complexity.
C404.3-P04	М	This knowledge helps to identify the best embedded component.
C404.3-P05	Н	This knowledge helps in identifying the best tools needed to develop the embedded system
C404.3-P06	М	This knowledge helps us to use effective engineering practices such as requirement gathering and specification etc. before choosing the best components for embedded system.
C404.3-P07	М	This knowledge helps as to do research in different embedded component effectively.
C404.3-PO10	Н	This knowledge helps to communicate our ideas and suggestion in a more effective manner to the community.
C404.3-P012	Н	These concepts are fundamental to CS and can be used in research and other innovative ideas.
C404.3-PS01	Н	The knowledge in different components in embedded system can be applied to design solutions to complex engineering problems in multidisciplinary areas. They belong to the core concepts of CS.
C404.3-PSO2	Н	The knowledge of embedded system can be used to have products of industry standard
C404.3-PSO3	М	The knowledge of embedded system helps in research areas such as designing & developing different embedded products etc.
C404.4-P01	М	The knowledge in different embedded systems components helps in designing solutions for complex engineering problems.
C404.4-PO2	М	The knowledge in different embedded systems components helps in analysis of performance of solutions to complex problems
C404.4-PO3	М	The knowledge in different embedded systems components help in designing solutions and analyzing its complexity.
C404.4-P04	М	This knowledge helps to identify the best embedded component.
C404.4-P05	M	This knowledge helps in identifying the best tools needed to

		develop the embedded system
C404.4-P06	М	This knowledge helps us to use effective engineering practices such
		as requirement gathering and specification etc. before choosing the
		best components for embedded system.
C404.4-P07	М	This knowledge helps as to do research in different embedded
		component effectively.
C404.4-P010	Н	This knowledge helps to communicate our ideas and suggestion in
		a more effective manner to the community.
C404.4-P012	Н	These concepts are fundamental to CS and can be used in research
		and other innovative ideas.
C404.4-PS01	М	The knowledge in different components in embedded system can
		be applied to design solutions to complex engineering problems in
		multidisciplinary areas. They belong to the core concepts of CS.
C404.4-PS02	Н	The knowledge of embedded system can be used to have products
		of industry standard
C404.4-PS03	М	The knowledge of embedded system helps in research areas such
		as designing & developing different embedded products etc.
C404.5-P01	Н	The knowledge in different embedded systems components helps
		in designing solutions for complex engineering problems.
C404.5-P02	Н	The knowledge in different embedded systems components helps
		in analysis of performance of solutions to complex problems
C404.5-P03	Н	The knowledge in different embedded systems components help in
		designing solutions and analyzing its complexity.
C404.5-P04	Н	This knowledge helps to identify the best embedded component.
C404.5-P05	М	This knowledge helps in identifying the best tools needed to
		develop the embedded system
C404.5-P06	М	This knowledge helps us to use effective engineering practices such
		as requirement gathering and specification etc. before choosing the
		best components for embedded system.
C404.5-P07	М	This knowledge helps as to do research in different embedded
		component effectively.
C404.5-P010	М	This knowledge helps to communicate our ideas and suggestion in
		a more effective manner to the community.
C404.5-P012	М	These concepts are fundamental to CS and can be used in research
		and other innovative ideas.
C404.5-PS01	М	The knowledge in different components in embedded system can
		be applied to design solutions to complex engineering problems in
		multidisciplinary areas. They belong to the core concepts of CS.
C404.5-PS02	М	The knowledge of embedded system can be used to have products
		of industry standard
C404.5-PS03	М	The knowledge of embedded system helps in research areas such
		as designing & developing different embedded products etc.
C404.6-P01	М	The knowledge in different embedded systems components helps
		in designing solutions for complex engineering problems.
C404.6-P02	М	The knowledge in different embedded systems components helps
		in analysis of performance of solutions to complex problems

C404.6-PO3	М	The knowledge in different embedded systems components help in
		designing solutions and analyzing its complexity.
C404.6-PO4	М	This knowledge helps to identify the best embedded component.
C404.6-P05	М	This knowledge helps in identifying the best tools needed to
		develop the embedded system
C404.6-P06	М	This knowledge helps us to use effective engineering practices such
		as requirement gathering and specification etc. before choosing the
		best components for embedded system.
C404.6-P07	М	This knowledge helps as to do research in different embedded
		component effectively.
C404.6-P010	М	This knowledge helps to communicate our ideas and suggestion in
		a more effective manner to the community.
C404.6-P012	М	These concepts are fundamental to CS and can be used in research
		and other innovative ideas.
C404.6-PS01	М	The knowledge in different components in embedded system can
		be applied to design solutions to complex engineering problems in
		multidisciplinary areas. They belong to the core concepts of CS.
C404.6-PS02	М	The knowledge of embedded system can be used to have products
		of industry standard
C404.6-PS03	М	The knowledge of embedded system helps in research areas such
		as designing & developing different embedded products etc.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSIONAL REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED
		ACTIONS
1	HARDWARE-SOFTWARE TRADEOFF	Learning materials
		provided

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

1 Progamming using emebedded C

workshop

WEB SOURCE REFERENCES:

1	https://onlinecourses.nptel.ac.in/noc19_cs22/preview						
2.	https://nptel.ac.in/noc/individual_course.php?id=noc18-cs12						
DELIV	DELIVERY/INSTRUCTIONAL METHODOLOGIES:						

✓ CHALK & TALK ✓ STUD. ✓ WEB ASSIGNMENT RESOURCES ✓ LCD/SMART STUD. BOARDS SEMINARS □ ADD-ON COURSES

ASSESSMENT METHODOLOGIES-DIRECT

✓ ASSIGNMENTS	\Box STUD.	✓ TESTS/MODEL	✓ UNIV.
	SEMINARS	EXAMS	EXAMINATION
STUD. LAB	✓ STUD. VIVA	□ MINI/MAJOR	□ CERTIFICATIONS
PRACTICES		PROJECTS	
□ ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

✓	ASSESSMENT OF COURSE OUTCOMES (BY	✓	STUDENT FEEDBACK ON FACULTY	
	FEEDBACK, ONCE)	(TWICE)		
	□ ASSESSMENT OF MINI/MAJOR PROJECTS BY		□ OTHERS	
	EXT. EXPERTS			

Prepared by

Approved by

HOD

SANDY JOSEPH

UDAY BABU P

CS462 Fuzzy Set Theory and Applications

COURSE INFORMATION SHEET

PROGRAMME: ENGINEERING	DEGREE: B.TECH
COURSE- FUZZY SET THEORY AND	SEMESTER-1V CREDITS-4
APPLICATIONS	
COURSE CODE- CS462	COURSE TYPE - ELECTIVE
Year of introduction - 2016	
COURSE AREA/DOMAIN-	CONTACT HOURS: 3-0-0
MATHEMATICS	
CORRESPONDING LAB COURSE	LAB COURSE NAME: NA
CODE (IF ANY): NIL	

SYLLABUS:

MODULE	DETAILS	HOURS
Ι	Classical sets vs Fuzzy Sets - Need for fuzzy sets -	6
	Definition and Mathematical representations - Level Sets	
	- Fuzzy functions - Zadeh's Extension Principle.	
II	Operations on [0,1] - Fuzzy negation, triangular norms, t-	6
	conorms, fuzzy implications, Aggregation Operations,	
	Fuzzy Functional Equations	
III	Fuzzy Binary and n-ary relations - composition of fuzzy	7
	relations - Fuzzy Equivalence Relations - Fuzzy	
	Compatibility Relations - Fuzzy Relational Equations	
IV	Fuzzy Measures - Evidence Theory - Necessity and Belief	7
	Measures - Probability Measures vs Possibility Measures	
V	Fuzzy Decision Making - Fuzzy Relational Inference -	8
	Compositional Rule of Inference - Efficiency of Inference	
	- Hierarchical	
VI	Fuzzy If-Then Rule Base - Inference Engine - Takagi-	8
	Sugeno	
	Fuzzy Systems - Function Approximation Applications	
	Advanced topics: Adaptive fuzzy inference systems:	
	Adaptive networks - Architectures - Learning rules.	
	Adaptive neuro-fuzzy inference systems (ANFIS) -	
	Architectures - Hybrid learning rules.	

Total hours – 40

Text /Reference books

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION							
Т	Text Books:							
	1. George J Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic : Theory and							
	Applications",							
	2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", 3rd Edition,							
	Willey, 2010.							
R	1. E P Klement, R Mesiar and E. Pap, Triangular norms, Kluwer Academic Press,							
	Dordrecht, 2000.							
R	2. H.J. Zimmermann, Fuzzy Set Theory and its Applications, Allied Publishers,							
	New Delhi 1991.							
R	3. Kevin M Passino and Stephen Yurkovich, Fuzzy Control, Addison Wesley							
	Longman, 1998.							
R	4. M Grabisch et al., Aggregation Functions, Series - Encyclopedia Of Mathematics							
	And Its Applications, Cambridge University Press, 2009							
R	5. Michal Baczynski and Balasubramaniam Jayaram, Fuzzy Implications, Springer							
	Verlag, Heidelberg, 2008							

Course Objectives

- To introduce the theory of fuzzy sets.
- To discuss theoretical differences between fuzzy sets and classical sets.
- To discuss fuzzy logic inference
- To introduce fuzzy arithmetic concepts.
- To discuss fuzzy inference applications in the area of control

.<u>Course Outcomes</u>

1	Students will be able to interpret fuzzy set theory and uncertainty concepts
2	Students will be able to identify the similarities and differences between probability
	theory and fuzzy set theory and their application conditions
3	Students will get the concept of fuzzy relations
4	Students are introduced to fuzzy logic
5	Students will be able to apply fuzzy set theory in modeling and analyzing uncertainty
	in a decision problem
6	Students will be able to apply fuzzy control by examining simple control problem
	examples

	P 0 1	<i>PO</i> 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	Р О 10	Р О 11	Р О 12	PS 0 1	PS 0 2	PS 0 3
C01	2	2	-	-	-	-	-	-	-	-	-	-	3	-	-
<i>CO2</i>		2	-	-	-	-	-	-	-	-	-	-	2	2	-
СОЗ	3	-	1	-	-	-	-	-	-	-	-	-	-	-	-
<i>CO4</i>	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<i>C05</i>	3	-		-	-	-	-	-	-	-	-	-	-	3	-
CO6	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-

CO-PO AND CO-PSO MAPPING

JUSTIFICATIONS FOR CO-PO MAPPING

MAPPING LOW/MEDIU MAPPING M/ HIGH		JUSTIFICATION
CO1-PO1	М	Fundamental knowledge of fuzzy set theory and uncertainty concepts will help the students in analyzing and apply it in various engineering problems.
CO1-PO2	М	Engineering problems can be formulated and analyze using the fuzzy set theory and uncertainty concepts.
СО2-РО2 М		Various complex Engineering problems can solved using the concept of probability theory and fuzzy set theory and their application conditions
СОЗ-РО1 Н		Fundamental knowledge of fuzzy relations help the students in finding the solutions to complicated engineering problems.
СОЗ-РОЗ	L	Various composition rules are used in designing solutions to various engineering problems.
CO4-PO1	М	To understand the concept of Fuzzy logic and apply them to model fuzzy systems.
CO5-PO1	Н	Use the fuzzy set theory to solve decision making problems
СО6-РО1 Н		To use the concept of fuzzy control and their applications to solve control problems.
CO6-PO2	L	Fuzzy set theory and their applications help the students in identifying suitable solutions for complex engineering problems.

JUSTIFICATIONS FOR CO-PSO MAPPING

MAPPING	LOW/MEDIUM/ HIGH	JUSTIFICATION			
CO1-PSO1	Н	Students will use basic knowledge in mathematics in the domain of Fuzzy set theory and Fuzzy logic, to solve engineering problems.			
CO1-PSO2	М	Principles of fuzzy logic operations are used in design of decision making models.			
CO2-PSO1	М	The concepts of fuzzy relation and composition are used in solving various decision problems.			
CO5-PSO2	Н	Students will use concept of fuzzy sets to develop and implement new ideas on product design and analysis of fuzzy systems.			

GAPS IN THE SYLLABUS- TO MEET INDUSTRY / PROFESSION

REQUIREMENT

Sl no	Description	Proposed actions	Relevance
1	Extension of fuzzy sets to algebraic	Seminar	PO2, PO3
	structures.		

WEB SOURCES

WEB SOURCE REFERENCES:

1	https://www.thesisscientist.com/docs/Study%20Notes/66860129-5a91-459d-810f-54e0fc41175d
2	https://ocw.mit.edu/courses/health-sciences-and-technology/hst-951j-medical-decision-support-spring-2003/lecture-notes/lecture4.pdf
3	https://www.iitk.ac.in/eeold/archive/courses/2013/intel-info/d1pdf3.pdf
4	https://www.it.uu.se/edu/course/homepage/bild2/ht11/Lectures/Fuzzy_lecture.pdf
5	https://nptel.ac.in/courses/106105173/2
6	https://www.cse.iitb.ac.in/~cs621-2011/lectures_2009/cs621-lect38-fuzzy-logic-2009-11-11.ppt
7	https://www.scss.tcd.ie/khurshid.ahmad/Teaching/Lectures_on_Fuzzy_Logic/FuzzyLogicSystems.html

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	□ STUD. ASSIGNMENT	□ WEB	LCD/SMART
		RESOURCES	BOARDS
STUD.	□ ADD-ON COURSES		
SEMINARS			

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS	□ STUD.	□ TESTS/MODEL	\Box UNIV.
	SEMINARS	EXAMS	EXAMINATION
STUD. LAB	□ STUD. VIVA	□ MINI/MAJOR	
PRACTICES		PROJECTS	CERTIFICATIONS
□ ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES	□ STUDENT FEEDBACK ON
(BY FEEDBACK, ONCE)	FACULTY (TWICE)
□ ASSESSMENT OF MINI/MAJOR	□ OTHERS
PROJECTS BY EXT. EXPERTS	

Prepared by Dr.Ramkumar P.B Approved by Dr. Antony V Varghese

CS464 Artificial Intelligence

COURSE INFORMATION SHEET

PROGRAMME: COMPUTER SCIENCE	DEGREE: B TECH
& ENGINEERING	
COURSE: ARTIFICIAL INTELLIGENCE	SEMESTER: 8 CREDITS: 3
COURSE CODE: CS464	COURSE TYPE: ELECTIVE
REGULATION: 2016	
COURSE AREA/DOMAIN:MACHINE	CONTACT HOURS: 3
LEARNING	
CORRESPONDING LAB COURSE CODE	LAB COURSE NAME:
(IF ANY): NA	

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	Introduction : What is AI, The foundations of AI, History and applications, Production systems. Structures and strategies for state space search. Informed and Uninformed searches.	5
Π	Search Methods: data driven and goal driven search. Depth first and breadth first search, DFS with iterative deepening. Heuristic search-best first search, A * algorithm.AO* algorithm, Constraint Satisfaction. Crypt Arithmetic Problems	8
III	AI representational schemes- Semantic nets, conceptual dependency, scripts, frames, introduction to agent based problem solving, Machine learning-symbol based-a frame work for symbol based learning.	6
IV	Advanced Search: Heuristics in Games, Design of good heuristic-an example. Min-Max Search Procedure, Alpha Beta pruning,	6
V	Learning Concepts: Version space search. Back propagation learning. Social and emergent models of learning-genetic algorithm, classifier systems and genetic programming.	9
VI	Expert Systems: rule based expert systems. Natural language processing-natural language understanding problem, deconstructing language. Syntax stochastic tools for language analysis, natural language applications	9
	TOTAL HOURS	43

TEXT/REFERENCE BOOKS:

Τ/	BOOK TITLE/AUTHORS/PUBLICATION
R	

E Rich, K Knight, Artificial Intelligence, 3/e, Tata McGraw Hil, 2009.
George.F.Luger, Artificial Intelligence- Structures and Strategies for Complex
Problem Solving, 4/e, Pearson Education. 2002.
D. Poole and A. Mackworth. Artificial Intelligence: Foundations of Computational
Agents, Cambridge University Press, 2010
Dan W Patterson, Introduction to Artificial Intelligence, Pearson, 2009
Deepak Khemeni, A First course in Artificial Intelligence, Tata McGraw Hill, 2013
Maja J. Mataric ,Robotics Primer,MIT press,2007
Patrick Henry Winston, Artificial intelligence, Addisson wessley, 1992
Stefan Edelkamp, Stefan Schroedl, Heuristic Search: Theory and Applications,
Morgan Kaufman, 2011.
Stuart Jonathan Russell, Peter Norvig, Artificial intelligence, A modern approach, 3rd
edition, pearson,2010

COURSE OBJECTIVES:

1	To introduce basic principles that drive complex real world intelligence applications.
2	To introduce and discuss the basic concepts of AI Techniques and Learning
3	

COURSE OUTCOMES:

SNO	DESCRIPTION	Bloom's Taxonomy Level
469.1	The Student will be able to identify the scope and limits of	Identify(Level 1)
	the artificial intelligence (AI) field	
469.2	The Student will be able to assess the applicability, strengths,	Assess(Level 6)
	and weaknesses of the basic knowledge representation	
469.3	The Student will be able to interpret the role of knowledge	Interpret(Level 2)
	representation, problem solving, and learning	
469.4	The Student will be able to explain various search algorithms	explain(Level 2)
	(uninformed, informed, and heuristic) for problem solving	
469.5	The Student will be able to comprehend the fundamentals of	comprehend(Level 2)
	Natural Language Processing	

CO-PO AND CO-PSO MAPPING

	PO	P0	PO	PO	PSO	PS	PSO3								
	1	2	3	4	5	6	7	8	9	10	11	12	1	02	
CS464.1	3	3	3	3	-	-	-	-	-	-	-	-	3	-	-
CS464.2	2	-	2	2	-	2	-	-	-	-	-	-	2	-	-
CS464.3	2	-	2	2	-	2	-	-	-	-	-	-	2	-	-
CS464.4	2	2	2	-	-	-	-	-	-	-	-	-	2	-	-
CS464.5	-	2	2	2	-	2	-	-	-	-	-	-	2	-	-

LOW/MEDIUM/HIGH→1/2/3

JUSTIFICATIONS FOR CO-PO MAPPING

Mapping LOW/MEDIUM/ HIGH		Justification				
CS464.1-P01	Н	By knowing the scope and limits of AI Students can identify the				
		solvable and unsolvable problems				
CS464.1-PO2	Н	With suitable state space representation complex engineering				
		problems can be solved easily.				
CS464.1-PO3	Н	By knowing the scope and limits of AI students can develop creative				
		solutions for problems.				
CS464.1-PS01	Н	Students can identify, analyze and design complex engineering				
		problems by knowing the basic concepts of AI.				
CS464.2/3-PO1	М	Students can apply knowledge of mathematics and engineering				
		fundamentals to strengthen AI knowledge representations.				
CS464.2/3-PO3	М	Good knowledge representation helps to design/develop solutions				
		in better ways.				
CS464.2/3-PO4	М	Different properties of knowledge representation help for better				
		analysis and interpretation of data hence to provide valid				
		conclusions.				
CS464.2/3-PO6	М	Knowledge representations like semantic nets, conceptual				
		dependency helps to asses societal, health, safety etc in systematic				
		way.				
CS464.2/3-PS01	М	Good knowledge representation helps to make good solution to				
		complex problems.				
CS464.4-P01	М	To implement search algorithm mathematical knowledge is needed				
CS464.4-PO2	М	To reach substantiated conclusions to different problems ,students				
		should have an idea about different search techniques.				
CS464.4-PO3	М	Idea about heuristic type searching is required to develop optimal				
		solutions.				
CS464.4-PS01	М	Idea about different search algorithms helps to design good solution				
		for complex engineering problems.				
CS464.5-PO2	М	Natural language understanding required for problem analysis.				
CS464.5-PO3	М	Natural language understanding required to design solutions to				
		problems.				
CS464.5-PO4	М	I conduct investigation on problems idea about NLP is needed.				
CS464.6-PO6	М	To apply reasoning informed by the contextual knowledge to asses				
		societal needs student should have an idea about language				
		processing.				
CS464.5-PS01	М	Natural Language understanding is required to anlyse and design				
		solutions.				

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

S. NO	DESCRIPTION	PROPOSED	РО
		ACTIONS	MAPPING
1	Planning and learning methods	Reading	2,3,4
		assignment	

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

S. NO	ТОРІС	PO MAPPING
1	Design of agents and intelligent Agents	3,4,5

WEB SOURCE REFERENCES:

1	http://code.google.com/p/aima-python/
2	http://www.aispace.org/mainTools.shtml
3	http://www.wiziq.com/tutorials/artificial-intelligence

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	☑ STUD.	☑ WEB RESOURCES	
	ASSIGNMENT		
□ LCD/SMART	□ STUD. SEMINARS	□ ADD-ON COURSES	
BOARDS			

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	🗆 STUD. SEMINARS	☑ TESTS/MODEL	☑ UNIV.		
		EXAMS	EXAMINATION		
STUD. LAB	🗆 STUD. VIVA	□ MINI/MAJOR	□ CERTIFICATIONS		
PRACTICES		PROJECTS			
□ ADD-ON COURSES	□ OTHERS				

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE)	(ONCE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY	□ OTHERS
EXT. EXPERTS	

Prepared by

Approved by

MEERA M.

Dr SMINU IZUDHEEN (HOD)

CS468 Cloud Computing

COURSE INFORMATION SHEET

PROGRAMME: COMPUTER SCIENCE &	DEGREE: B TECH
ENGINEERING	
COURSE: CLOUD COMPUTING	SEMESTER: 8 CREDITS: 3
COURSE CODE: CS468 REGULATION: 2016	COURSE TYPE: ELECTIVE
COURSE AREA/DOMAIN:CLOUD COMPUTING	CONTACT HOURS: 3
CORRESPONDING LAB COURSE CODE (IF ANY):	LAB COURSE NAME: NA
NA	

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	INTRODUCTION TO VIRTUALIZATION	7
	Virtual Machines and Virtualization Middleware – Data Center Virtualization for	
	Cloud Computing – Implementation Levels of Virtualization – Virtualization	
	Structures/Tools and Mechanisms- Virtualization of CPU - Memory - I/O	
	Devices	
II	INTRODUCTION TO CLOUD COMPUTING	8
	System Models for Distributed and Cloud Computing – Software Environments	
	for Distributed Systems and Clouds - Cloud Computing and Service Models -	
	Public – Private – Hybrid Clouds – Infrastructure-as-a-Service (IaaS) – Platform-	
	as-a-Service (PaaS) - Software-as-a-Service (SaaS)-Different Service Providers	
III	CLOUD ARCHITECTURE AND RESOURCE MANAGEMENT	8
	Architectural Design of Compute and Storage Clouds – Public Cloud Platforms:	
	GAE – AWS – Azure-Emerging Cloud Software Environments – Eucalyptus-	
	Nimbus - Open Stack - Extended Cloud Computing Services - Resource	
	Provisioning and Platform Deployment – Virtual Machine Creation and	
	Management.	
IV	CLOUD PROGRAMMING	7
	Parallel Computing and Programming Paradigms - Map Reduce -Twister -	
	Iterative Map Reduce - Hadoop Library from Apache -Pig Latin High Level	
	Languages- Mapping Applications to Parallel and Distributed Systems -	
	Programming the Google App Engine – Google File System (GFS) – Big Table –	
	Google's NOSQL System	
V	SECURITY IN THE CLOUD	6
	Security Overview – Cloud Security Challenges – Security -as-a-Service – Security	
	Governance – Risk Management – Security Monitoring – Security Architecture	
	Design – Data Security – Application Security – Virtual Machine Security.	
VI	USING CLOUD SERVICES :	6
	Email Communications - Collaborating on To-Do Lists -Contact Lists - Cloud	
	Computing for the Community- Collaborating on Calendars – Schedules and Task	
	Management – Exploring Online Scheduling Applications – Exploring Online	
	Planning and Task Management – Collaborating on Event Management – Project	
	Management -Word Processing – Databases	
	TOTAL HOURS	42

TEXT/REFERENCE BOOKS:

OOK TITLE/AUTHORS/PUBLICATION ii Hwang , Geoffrey C Fox, Jack J Dongarra : Distributed and Cloud Computing – From irallel Processing to the Internet of Things , Morgan Kaufmann Publishers – 2012.
rallel Processing to the Internet of Things Morgan Kaufmann Publishers – 2012
and reference of rings, storgan Raumann rubishers 2012.
ex Amies, Harm Sluiman, Qiang Guo Tong and Guo Ning Liu: Developing and Hosting
oplications on the cloud, IBM Press, 2012.
eorge Reese: Cloud Application Architectures: Building Applications and Infrastructure in
e Cloud (Theory in Practice), O'Reilly Publications, 2009.
aley Beard: Cloud Computing Best Practices for Managing and Measuring Processes for On-
mand Computing – applications and Data Centers in the Cloud with SLAs, Emereo Pty
mited, July 2008
mes E. Smith and Ravi Nair: Virtual Machines: Versatile Platforms for Systems and
ocesses, Morgan Kaufmann, ELSEVIER Publication, 2006.
hn W Rittinghouse and James F Ransome : Cloud Computing: Implementation -
anagement – and Security, CRC Press, 2010.
ichael Miller: Cloud Computing: Web-Based Applications That Change the Way You Work
d Collaborate Online, Pearson Education, 2009.
chard N. Katz: The Tower and The Cloud, Higher Education in the Age of Cloud Computing,
108.
by Velte, Anthony Velte and Robert Elsenpeter: Cloud Computing – A Practical Approach,
ИН, 2009.
ecentric entrice h

COURSE OBJECTIVES:

1	To impart the fundamentals of virtualization techniques.			
2	To introduce concepts and security issues of cloud paradigm.			
3	To introduce cloud computing based programming techniques and cloud services.			

COURSE OUTCOMES:

SNO	DESCRIPTION	Bloom's Taxonomy Level
468.1	The students will be able to identify the significance of	Identify (Level 2)
	implementing virtualization techniques.	
468.2	The students will able to interpret the various cloud computing	Interpret (Level 3)
	models and services.	
468.3	The students will able to compare the various public cloud	Compare (Level 2)
	platforms and software environments.	
468.4	The students will able to apply appropriate cloud programming	Apply (Level 3)
	methods to solve big data problems.	
468.5	The students will able to appreciate the need of security	Appreciate (Level 4)
	mechanisms in cloud.	
468.6	The students will be able to illustrate the use of various cloud	Illustrate (Level 2)
	services available online.	

CO-PO AND CO-PSO MAPPING

	PO	РО	PO	P0	PO	PO	PSO	PS	PSO3						
	1	2	3	4	5	6	7	8	9	10	11	12	1	02	
CS468.1	-	2	-	-	-	-	-	-	-	-	-	-	1	-	-
CS468.2	1	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CS468.3	-	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CS468.4	-	2	2	-	-	-	-	-	-	-	-	-	2	2	-
CS468.5	-	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CS468.6	-	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CS468	1	2	2	-	-	-	-	-	-	-	-	-	2	2	-

LOW/MEDIUM/HIGH→1/2/3

JUSTIFICATIONS FOR CO-PO MAPPING

Mapping	LOW/MEDIUM/ HIGH	Justification
CS468.1-PO2	М	Using basic concepts of computer engineering students can identify the concept of virtualization
CS468.2-P01	L	Students can understand the various cloud computing models
CS468.3-PO2	М	Can compare and understand the various public cloud platforms available and also their corresponding software environment
CS468.4-PO2	М	Can analyze Big Data problems for developing potential solutions
CS468.4-PO3	М	Solutions can be developed for complex Big Data problems.
CS468.5-PO2	М	Appraise, correlate and conclude the need for Cloud Security mechanisms
CS468.6-PO2	М	Students can use the knowledge gained to work on various cloud applications

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

S. NO	DESCRIPTION	PROPOSED	РО
		ACTIONS	MAPPING
1	Hands on workshop on Hadoop	Workshop	1,3,5
2	Cloud Implementation	Workshop	1,3,5

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

S. NO	ΤΟΡΙϹ	PO MAPPING
1	Performance of Cloud	1,2,3
2	Cloud for HPC and HTC	1,3,5

WEB SOURCE REFERENCES:

1	https://csrc.nist.gov/publications/detail/sp/800-145/final	
---	--	--

2	https://docs.aws.amazon.com/index.html?nc2=h_ql_doc#lang/en_us					
3	https://docs.microsoft.com/en-in/azure/					
4	https://cloud.google.com/docs/					

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	☑ STUD.	☑ WEB RESOURCES	
	ASSIGNMENT		
□ LCD/SMART	□ STUD. SEMINARS	ADD-ON COURSES	
BOARDS			

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	□ STUD. SEMINARS	TESTS/MODEL	🗹 UNIV.		
		EXAMS	EXAMINATION		
🗆 STUD. LAB	🗆 STUD. VIVA	□ MINI/MAJOR	□ CERTIFICATIONS		
PRACTICES		PROJECTS			
□ ADD-ON COURSES	□ OTHERS				

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE)	(ONCE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY	□ OTHERS
EXT. EXPERTS	

Prepared by

Approved by

ANU MARIA JOYKUTTY

SMINU IZUDHEEN HOD, DCS

CS472 Principles of Information Security

COURSE INFORMATION SHEET

PROGRAMME: COMPUTER SCIENCE &	DEGREE: BTECH
ENGINEERING	
COURSE: PRINCIPLES OF INFORMATION	SEMESTER: VIII CREDITS: 3
SECURITY	
COURSE CODE: CS472	COURSE TYPE: ELECTIVE
COURSE AREA/DOMAIN: SECURITY	CONTACT HOURS: 3-0-0(L-T-P) hours/Week .
CORRESPONDING LAB COURSE CODE: NIL	LAB COURSE NAME: NIL

SYLLABUS:

UNIT	DETAILS	HOURS
I	 Introduction: Overview of computer security, Security concepts, Need of Security- Threats- Deliberate software attacks, Deviation in quality of service, Attacks- malicious code, brute force, Timing attack, sniffers. Access Control Mechanisms - Access Control, Access control matrix, Access control in OS-Discretionary and Mandatory access control, Role-based access control, case study SELinux 	7
Π	Security policies and models: confidentiality policies, Bell- LaPadula model, Integrity policies, Biba model, Clark-Wilson models, Chinese wall model, waterfall model	7
III	Software vulnerabilities : Buffer and stack overflow, Crosssite scripting(XSS), and vulnerabilities, SQL injection and vulnerabilities, Phishing.	6
IV	Malware: Viruses, Worms and Trojans. Topological worms. Internet propagation models for worms.	6
V	Security in current domains: Wireless LAN security – WEP details. wireless LAN vulnerabilities – frame spoofing. Cellphone security - GSM and UMTS security. Mobile malware - bluetooth security issues.	8
VI	Secure Electronic transactions: Framework, strength and weakness, Security in current applications: Online banking, Credit Card Payment Systems. Web Services security: XML, SOAP, SAML, RFID	8
	TOTAL HOURS	42

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
	 Text Books: 1. Bernard Menezes, Network security and Cryptography, Cengage Learning India, 2010. 2. M Bishop, Computer Security: Art and Science, Pearson Education, 2003.
	 References: 1. E Whiteman and J Mattord, Principles of information security 4th edn, Cengage Learning 2. V K Pachghare, Cryptography and information security, PHI 3. Behrousz A Forouzan, D Mukhopadhyay, Cryptography and network Security, McGraw Hill 4. W Mao, Modern Cryptography: Theory & Practice, Pearson Education, 2004. 5. C P. Fleeger and S L Fleeger, Security in Computing, 3/e, Pearson Education, 2003.

COURSE PRE-REQUISITES: NIL

COURSE OBJECTIVES:

- To introduce fundamental concepts of security.
- To introduce and discuss the relevance of security in operating system, web services etc.
- To introduce fundamental concepts of secure electronic transactions.

COURSE OUTCOMES:

CS472.1	appreciate the common threats faced today			
CS472.2	terpret the foundational theory behind information security			
CS472.3	design a secure system			
CS472.4	identify the potential vulnerabilities in software			
CS472.5	appreciate the relevance of security in various domains			
CS472.6	develop secure web services and perform secure e-transactions			

\smallsetminus	PO	PSO1	PSO2	PSO3											
	1	2	3	4	5	6	7	8	9	10	11	12	1501	1502	1303
CS472.1	1			1									2		
CS472.2		3		2									2		
CS472.3			3										2		2
CS472.4	1			3									2		
CS472.5	1			1									2		
CS472.6			3		2								2		2
CS472															
(overall	1	3	3	2	2								2		2
level)															

CO-PO AND CO-PSO MAPPING

JUSTIFATIONS FOR CO-PO MAPPING

Mapping	LOW/MEDIUM	Justification
	/HIGH	
CS472.1-	L	Students will be able to use engineering knowledge to identify and
PO1		appreciate the common threats faced today.
CS472.1-	L	Students will be able to research based knowledge to identify threats in
PO4		the information system.
CS472.1-	М	Students gain knowledge on identifying threats in a computer system.
PSO1		
CS472.2-	Н	Students gain the capability to identify, formulate and review the
PO2		theory behind information security.
CS472.2-	М	Students can conduct investigations to analyze and understand the
PO4		theory behind information security.
CS472.2-	М	Students gain knowledge on foundational theory behind computer
PSO1		science systems security.
CS472.3-	Н	Students gain enough knowledge on designing a secure system.
PO3		
CS472.3-	М	Students attain the capability to design a computer science specific skill
PSO1		of designing a secure system.
CS472.3-	М	Students are made able to design innovative and secure systems.
PSO3		
CS472.4-	L	Students are able to use engineering knowledge to identify potential
PO1		vulnerabilities in software.
CS472.4-	Н	Students are able to conduct investigations in software to identify
PO4		vulnerabilities in them.
CS472.4-	М	Students are able to identify vulnerabilities in computer science
PSO1		specific software systems.

CS472.5-	L	Students are able to apply engineering knowledge to determine the
PO1		relevance of security.
CS472.5-	L	Students are able to conduct investigations to problems sos as to
PO4		identify the relevance of security in them.
CS472.5-	М	Students are able to apply their knowledge in identifying the relevance
PSO1		of security in computer science.
CS472.6-	Н	Students will be able to design and develop secure web services.
PO3		
CS472.6-	М	Students will be able to use modern tools to develop secure web
PO5		services and transactions.
CS472.6-	М	Students will be able to apply computer science knowledge to develop
PSO1		services and transactions that are secure.
CS472.6-	М	Students can develop innovative products using their knowledge in
PSO3		security.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	TOPICS	PROPOSED	PO MAPPING
		ACTIONS	
1	Hybrid models of security	Reading assignment	PO1,PSO1

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	TOPICS	PROPOSED	PO MAPPING
		ACTIONS	
1	Concepts of Block chain technology	Reading assignment	PO5,PSO1

WEB SOURCE REFERENCES:

1	https://nptel.ac.in/courses/106106129/28
2	https://nptel.ac.in/courses/106106141/
3	https://nptel.ac.in/courses/106106157/

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK✓	STUD. ASSIGNMENT✓	WEB RESOURCES✓
LCD/SMART BOARDS✓	STUD. SEMINARS√	ADD-ON COURSES✓

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS✓	STUD. SEMINARS√	TESTS/MODEL	UNIV.
		EXAMS✓	EXAMINATION✓
STUD. LAB	STUD. VIVA	MINI/MAJOR	CERTIFICATIONS
PRACTICES		PROJECTS	
ADD-ON COURSES	OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY	STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE) ✓	(ONCE) ✓
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS	OTHERS

Prepared by

Approved by

Ms. Jisha Mary Jose (Faculty) (HOD) Dr. Sminu Izudheen

CS484 Computer Graphics

COURSE INFORMATION SHEET

PROGRAMME: COMPUTER SCIENCE &	DEGREE: BTECH
ENGINEERING	
COURSE: COMPUTER GRAPHICS	SEMESTER: VIII CREDITS: 4
COURSE CODE: CS484	COURSE TYPE:CORE
COURSE AREA/DOMAIN: RECENT TRENDS	CONTACT HOURS: 4-0-0(L-T-P) hours/Week.
IN COMPUTING	
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: NIL
ANY): NIL	

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	Basic concepts in Computer Graphics – Types of Graphic	
	Devices – Interactive Graphic inputs – Raster Scan and Random	
	Scan Displays.	7
II	Line Drawing Algorithm- DDA, Bresenham's algorithm – Circle	
	Generation Algorithms –Mid point circle algorithm, Bresenham's	
	algorithm- Scan Conversion-frame buffers – solid area scan	
	conversion – polygon filling algorithms	8
III	Two dimensional transformations. Homogeneous coordinate	
	systems – matrix formulation and concatenation of	
	transformations.	
	Windowing concepts –Window to Viewport Transformation- Two	8
	dimensional clipping-Line clipping – Cohen Sutherland, Midpoint	
	Subdivision algorithm	
IV	Polygon clipping-Sutherland Hodgeman algorithm, Weiler-	
	Atherton algorithm, Three dimensional object representation-	8
	Polygon surfaces, Quadric surfaces – Basic 3D transformations	
V	Projections – Parallel and perspective projections – vanishing	9
	points.	
	Visible surface detection methods– Back face removal- Z-Buffer	
	algorithm, A-buffer algorithm, Depth-sorting method, Scan line	
	algorithm.	
VI	Image processing – Introduction - Fundamental steps in image	
	processing – digital image representations – relationship between	
	pixels – gray level histogram –spatial convolution and correlation	8
	– edge detection – Robert, Prewitt, Sobel.	
	TOTAL HOURS	48

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
	 Text Books: 1. Donald Hearn and M. Pauline Baker, Computer Graphics, PHI, 2e, 1996 2. E. Gose, R. Johnsonbaugh and S. Jost., Pattern Recognition and Image Analysis, PHI PTR, 1996 (Module VI – Image Processing part) 3. William M. Newman and Robert F. Sproull, Principles of Interactive Computer Graphics. McGraw Hill, 2e, 1979 4. Zhigang Xiang and Roy Plastock, Computer Graphics (Schaum's outline Series), McGraw Hill, 1986.
	 References: 1. David F. Rogers, Procedural Elements for Computer Graphics, Tata McGraw Hill, 2001. 2. M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision, Thomson India Edition, 2007. 3. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing. Pearson, 2017

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
MA 101	Engineering Mathematic I	Basic familiarity with calculus and linear algebra	S1

COURSE OBJECTIVES:

- To introduce concepts of graphics input and display devices.
- To discuss line and circle drawing algorithms.
- To introduce 2D and 3D transformations and projections.
- To introduce fundamentals of image processing.

CS4084.1	The Students will be able to compare various graphics devices
CS484.2	The Students will be able to analyze and implement algorithms for line
	drawing, circle drawing and polygon filling
CS484.3	The Students will be able to apply geometrical transformation on 2D and
	3D objects
CS484.4	The Students will be able to analyze and implement algorithms for clipping
CS484.5	The Students will be able to apply various projection techniques on 3D
	objects
CS484.6	The Students will be able to summarize visible surface detection methods
CS484.7	The Students will be able to interpret various concepts and basic operations
	of image processing

COURSE OUTCOMES:

CO-PO AND CO-PSO MAPPING

\smallsetminus	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CS484.1	3					1							3		
CS484.2		3	2										3	3	
CS484.3	3		2										3		
CS484.4	3		2										3	3	
CS484.5	3	2	2										3		
CS484.6	2	2											3		
CS484.7	2		2	1	1								3		2
CS401 (overall level)	3	2	2	1	1	1							3	3	2

JUSTIFATIONS FOR CO-PO MAPPING

Mapping	LOW/MEDIUM Justification	
	/HIGH	
CS484.1-	Н	Students will be able to understand the basic working principles of
PO1		graphics devices.
CS484.1-	L	They can use the knowledge on graphics devices to select resources to
PO6		various engineering activities.
CS484.1-	Н	Students will be able to understand the concepts of computer graphics

PSO1		and the devices used.
CS484.2-	Н	Students can analyzing various algorithms of circle and line drawing by
PO2		considering principles of mathematics.
CS484.2-	М	Students can use the algorithms to design various graphics applications
PO3		
CS484.2-	Н	Students will be able to understand the concepts of drawing basic
PSO1		primitives like line, circle etc.
CS484.2-	Н	Students will get the ability to acquire programming efficiency by
CS464.2- PSO2		studying the basic primitive drawing algorithms in software project
F 502		development.
CS484.3-	Н	Students will be able to apply the basics of mathematics to study the
PO1		concepts of geometric transformation on objects.
CS484.3-	М	Students can design graphics applications like animation by applying
PO3		the transformation steps on objects.
CS484.3-	Н	Students will be able to understand the concepts transformation on 2d
PSO1		and 3d objects
CS484.4-	Н	Students can apply mathematics and engineering fundamentals to study
PO1		the concept of clipping.
CS484.4-	М	Students will be able to apply the process of clipping to graphics
PO3		applications.
CS484.4-	Н	Students can analyze various clipping techniques and can understand
PS01		the concept of clipping on different type of objects.
CC 494 4	Н	Students will be able to implement the clipping algorithm using
CS484.4- PSO2		graphics programming languages and can use this to design various
F 502		applications.
CS484.5-	Н	Students can apply mathematics and engineering fundamentals to study
PO1		the concept projection of 3D objects to 2D plane.
CS484.5-	М	Students can analyze the projection techniques using the principles of
PO2		mathematics.
CS484.5-	М	Projection techniques can be used for designing software and hardware
PO3		graphics systems.
CS484.6-	М	Students will be able to understand the basic concepts in visible surface
PO1		detection techniques.
CS484.6-	М	Students can analyze various techniques of visible surface detection
PO2		using the principles of mathematics.
CS484.6-	Н	Students can analyze various surface detection techniques and able to
PSO1		understand the concept of eliminating hidden surface
CS484.7-	М	Students will be able to understand the basic concept of image
PO1		processing and its application by using the basic engineering and
101		mathematics principles.
CS484.7-	М	Students can design various image processing application system using
PO3		the basic knowledge on image processing

CS484.7-	L	Students will be able to use image processing tools like MATLAB,
PO5		OpenCV to design application programs.
CS484.7-	Н	Students will be able to understand the concepts of image processing
PSO1		techniques.
CS484.7-	M	Students will be able to design and develop innovative products by
PSO3		applying the concepts of image processing.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED	РО
		ACTIONS	MAPPING
1	Overview of Graphics tools	Learning Material Provided	PO5
2	OpenGL programming	Demonstration of program	PO3

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	TOPICS	PROPOSED ACTIONS	PO MAPPING
1	Spline Representation - Bezier Curve and B Spline Curve	Assignment	PO1
2	Graphics and human perception	Learning Material Provided	PO3
3	Concepts on Computer Vision	Learning Material Provided	PO1

WEB SOURCE REFERENCES:

1	http://classes.soe.ucsc.edu/cmps203/Fall04/finalreports/ProjectPaper_JerryYee.pdf
2	cs.brown.edu/~morgan/evolver/ESOP_Talk.ppt

3	http://oreilly.com/news/graphics/prog_lang_poster.pdf
4	http://en.wikipedia.org/wiki/List_of_3D_graphics_libraries
5	http://www.youtube.com/watch?v=U2fa8-TtV0w
6	http://www.mit.edu/~jpfautz/jpfautz-thesis.pdf
7	http://groups.csail.mit.edu/graphics/pubs/thesis_jcyang.pdf
8	http://www.cs.umd.edu/~djacobs/CMSC427/ImageBasedRendering.pdf
9	http://graphics.stanford.edu/papers/light/light-lores-corrected.pdf
10	http://inst.eecs.berkeley.edu/~cs294-13/fa09/lectures/scribe-lecture8.pdf

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

□CHALK & TALK✓	□STUD. ASSIGNMENT ✓	□WEB RESOURCES ✓
□LCD/SMART BOARDS✓	□STUD. SEMINARS✓	□ ADD-ON COURSES ✓

ASSESSMENT METHODOLOGIES-DIRECT

□ASSIGNMENTS✓	\Box STUD.	TESTS/MODEL	\Box UNIV.
	SEMINARS✓	EXAMS✓	EXAMINATION✓
□ STUD. LAB	🗆 STUD. VIVA	□ MINI/MAJOR	\Box CERTIFICATIONS
PRACTICES ✓		PROJECTS	
□ ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES (BY	□ STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE) ✓	(ONCE) ✓

\Box ASSESSMENT OF MINI/MAJOR PROJECTS BY \Box OT	HERS
EXT. EXPERTS	

Prepared by

Approved by

Mr. Ajith.S

Mr. Sminu Izudheen(HOD)

CS492 Project

COURSE INFORMATION SHEET

PROGRAMME: COMPUTER SCIENCE &	DEGREE: BTECH
ENGINEERING	
COURSE: MAIN PROJECT	SEMESTER: VIII CREDITS: 6
COURSE CODE : CS492	COURSE TYPE: CORE
REGULATION: 2016	
COURSE AREA/DOMAIN: Software Design	CONTACT HOURS: 18 hours/Week.
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME:
ANY):	

SYLLABUS:

UNIT	DETAILS	HOURS
	In depth study of the topic assigned in the light of the preliminary report prepared in the seventh	
	semester	
	Review and finalization of the approach to the problem relating to the assigned topic	
	Preparing a detailed action plan for conducting the investigation, including team work	
	Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed	
	Final development of product/process, testing, results, conclusions and future directions	
	Preparing a paper for Conference presentation/Publication in Journals, if possible	
	Preparing a report in the standard format for being evaluated by the dept. assessment board	
	Final project presentation and viva voce by the assessment board including external expert	
	TOTAL HOURS	18

TEXT/REFERENCE BOOKS:

T/R BOOK TITLE/AUTHORS/PUBLICATION Seven latest international journal papers having high impact factor. MOOC Courses from Course ERA, NPTEL etc.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
NIL			

COURSE OBJECTIVES:

1	To apply engineering knowledge in practical problem solving	
2	To foster innovation in design of products, processes or systems	
3	To develop creative thinking in finding viable solutions to engineering problems	

COURSE OUTCOMES:

SNO	DESCRIPTION
1	The students will be able to think innovatively on the development of components, products,
	processes or technologies in the engineering field
2	The students will be able to apply knowledge gained in solving real life engineering problems

CO-PO AND CO-PSO MAPPING

	PO	P0	PO	PO	PSO	PSO	PS								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	03
CS492.1	1	2		2	2				1				2		
CS492.2			2	1										1	2

JUSTIFICATIONS FOR CO-PO MAPPING

Mapping LOW/ME		Justification				
	DIUM/HI					
	GH					
CS451.1 -	L	Students do a literature survey while preparing for the seminar and project				
P02						
CS451.1 -	М	They reach valid conclusions after the literature survey				
PO4						
CS451.1-	М	Seminar presentations help them to develop public speaking skills				
P010						
CS451.2-	Н	They do a detailed research in their area of interest which help them to analyse				
PO4		and synthesis data .				
CS451.2-	М	They understand the limitations of the existing techniques and can use the				
P05		engineering techniques to arrive at valid conclusions				
CS451.2-	Н	Writing seminar report help them to develop technical report writing skills.				
PO10						
CS451.2-	М	By comparing different techniques they can identify ,analyse and design				
PSO1		complex engineering problems .				

WEB SOURCE REFERENCES:

1	ieee.org
2	dl.acm.org
3	Elsevier
4	Springer

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

✓ CHALK &	STUD. ASSIGNMENT	✓ WEB	
TALK		RESOURCES	
□LCD/SMART	✓ STUD.	✓ ADD-ON	
BOARDS	SEMINARS	COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

	m. STUD.	□TESTS/MODEL	□ UNIV.
ASSIGNMENT	SEMINA	EXAMS	EXAMINATION
S	RS		
✓ STUD.	n. STUD.	□MINI/MAJOR	
LAB	VIVA	PROJECTS	CERTIFICATION
PRACT			S
ICES			
✓ ADD-			
ON	OTHERS		
COURS			
ES			

ASSESSMENT METHODOLOGIES-INDIRECT

✓ ASSESSMENT OF COURSE OUTCOMES	✓ STUDENT FEEDBACK ON
(BY FEEDBACK, ONCE)	FACULTY (TWICE)
✓ ASSESSMENT OF MINI/MAJOR	□OTHERS
PROJECTS BY EXT. EXPERTS	

Prepared by,

Approved by (HOD)

Ms. Jomina John, Ms. Sangeetha Jamal, Mr. Paul Augustine