

KERALA TECHNOLOGICAL UNIVERSITY

CLUSTER ERNAKULAM WEST

SCHEME AND SYLLABUS

FOR

M. Tech. DEGREE PROGRAMME

IN

INDUSTRIAL DRIVES AND CONTROL

(2015 ADMISSION ONWARDS)

SCHEME AND SYLLABUS FOR M. Tech. DEGREE PROGRAMME IN INDUSTRIAL DRIVES AND CONTROL

SEMESTER-1

Exam	Course No:	Name	L- T – P	Internal	End Sen	nester Exam	Credits
Slot				Marks	Marks	Duration (hrs)	
А	06EE 6 01 1	Advanced	4-0-0	40	60	3	4
	**	Mathematics					
В	06EE 6 02 1	Analysis of	4-0-0	40	60	3	4
	*	Power					
		Electronic					
		Systems I					
С	06EE 6 03 1	Electric	4-0-0	40	60	3	4
		Drives					
D	06EE 6 04 1	Modeling &	3-0-0	40	60	3	3
		Analysis of					
		Electrical					
		Machines					
Е	06EE 6 X5	Elective I	3-0-0	40	60	3	3
	1						
	06EE 6 06 1	Research	0-2-0	100	0	0	2
		methodology					
	06EE 6 07 1	Seminar I	0-0-2	100	0	0	2
	06EE 6 08 1	Power	0-0-3	100	0	0	1
		Electronics					
		Lab					

Credits: 23

	Elective I (06 EE 6 X5 1)
06EE 6 15 1**	Systems Theory
06EE 6 25 1	Power Semiconductor Devices
06EE 6 35 1*	Digital Simulation of Power Electronic Systems
06EE 6 45 1***	Energy Management in Electrical Systems

* Common to IDAC/PE/PEPS

** Common to IDAC/PEPS

*** Common to IDAC/PE

Exam Slot	Course No:	Name	L- T – P	Internal Marks	End Sen	End Semester Exam	
					Marks	Duration (hrs)	
A	06EE 6 01 2 *	Analysis of Power Electronic Systems II	4-0-0	40	60	3	4
В	06EE 6 02 2	Advanced Control of AC drives	3-0-0	40	60	3	3
С	06EE 6 03 2	Special Electrical Machines and Drives	3-0-0	40	60	3	3
D	06EE 6 X4 2	Elective II	3-0-0	40	60	3	3
Е	06EE 6 X5 2	Elective III	3-0-0	40	60	3	3
	06EE 6 06 2	Mini Project	0-0-4	100	0	0	2
	06EE 6 07 2	Electric Drives Lab	0-0-3	100	0	0	1

SEMESTER-II

Credits:19

Elective II - (06EE 6 X4 2)		Elective III- (06 EE 6 X5 2)		
06EE 6 14 2*	Power Quality	06EE 6 15 2	FACTS Technology	
06EE 6 24 2	Adaptive Control	06EE 6 25 2	Optimal Control Theory	
06EE 6 34 2	Advanced Digital Signal Processing	06EE 6 35 2*	Smart Grid Technology and applications	
06EE 6 44 2*	Robotics and automation	06EE 6 45 2	Electric Vehicle Technology	

* Common to IDAC/PE/PEPS

Exam	Course No:	Name	L- T – P	Internal	End Semester Exam		Credits
Slot				Marks	Marks	Duration (hrs)	
Α	06EE7 X1 1	Elective IV	3-0-0	40	60	3	3
В	06EE7 X2 1	Elective V	3-0-0	40	60	3	3
	06EE 7 03 1	Seminar II	0-0-2	100	0	0	2
	06EE 7 04 1	Project(Phase 1)	0-0-12	50	0	0	6

SEMESTER-III

Credits: 14

Elective	-IV(06 EE 7 X1 1)	Electi	ve-V(06 EE 7 X2 1)
06EE 7 11 1*	Power Electronic control of special electrical machines	06EE 7 12 1*	Soft Computing Techniques
06EE 7 21 1*	Power Electronics for Renewable Energy Systems	06EE 7 22 1*	Distributed Generation and control
06EE 7 31 1*	Embedded Controllers	06EE 7 32 1*	High voltage DC Transmission
06EE 7 41 1	Digital Control Systems	06EE 7 42 1	Bio inspired algorithm and its applications

* Common to IDAC/PE/PEPS

SEMESTER-IV

Exam	Course No:	Name	L- T – P	Internal	End Semester Exam		Credits
Slot				Marks	Marks	Duration (hrs)	
Α	06EE 7 01 2	Project	0-0-21	70	30		12
		(Phase 2)					

Credits: 12

Total Credits for all semesters: 68

L – Lecture T - Tutorial P - Practical

Semester I

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 6 01 1	ADVANCED MATHEMATICS	4-0-0: 4	2015
PRE – REQUI	SITES:		
2. Sing	ics of Complex analysis gle variable calculus tor methods.		
COURSE OBJ	ECTIVES:		
To give an unde	rstanding of (1) complex transformations (2) varie	ous types of Op	otimization methods
(3)some propert	ies of probability distributions which are essential	l for the core sp	ecialization.
•	ns, Transformations, Probability distributions, Ma ptimization methods.	arkov Process,	Correlation, Linear
COURSE OUT	COME:		
	w the Mathematical tools required to understand t r graduate programme.	he core courses	they have to
Text Books &	References		
1. Ahlfors	, Complex Analysis, McGraw Hill		
2. Peter H	Ienrici, Applied & Computational Complex A	Analysis, John	wiley
3. A Papo	ulis, Probability, Random variables and Stoch	hastic Process	es, McGraw Hill.

4. S.S. Rao, Optimization theory and Applications, Wiley Eastern

	Course Plan		
	COURSE NO:06 EE 6 01 1	L - T -	P: 4 - 0 - 0
	COURSE NAME: ADVANCED MATHEMATICS	CRE	DITS:4
	CONTENT	Contact hrs	End Sem Marks %
MODULE			
	Analytic functions, Cauchy Riemann equations, Complex		
т	integration, Liovilli's theorem, Poisson's integral formula,		
L	Conformal mapping, Schwarz – Christoffels transformation	10	
			25%
	Density functions, Markov chain, Markov process		
II		6	
	FIRST INTERNAL EXAM		25%
	Correlation, Auto correlation, cross correlations	6	20 / 0
II		U	
	Linear programming, Simplex method, Big M method,		
III	Integer programming, Gomory's cutting plane method.	12	25%
	SECOND INTERNAL EXAM		
	Optimization: search methods, Hooke - Jeeves method,	10	
	Conjugate direction method, Steepest descent method,	10	
TX 7	Interpolation method (quadratic), Lagrange multiplier,		
IV	Kuhn tucker conditions.		25%
	END SEMESTER EXAM		

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 6 02 1	ANALYSIS OF POWER	4-0-0:4	2015
	ELECTRONIC SYSTEMS I		

PRE – REQUISITES:

- 1. Electric circuit theory
- 2. Network Analysis

COURSE OBJECTIVES:

To provide an in depth knowledge about the operation and analysis of power converter circuits.

SYLLABUS

Overview of Power Semiconductor Devices, Analysis of rectifier circuits, Operation and analysis of DC Choppers, Operation and analysis of AC voltage controllers and Cycloconverters, Analysis and control strategies of single phase and three phase inverters, Multilevel Inverters

COURSE OUTCOME:

The students will be able to

- 1. Acquire knowledge about the concepts and techniques used in power electronics circuits
- 2. Design and analyze various power converter circuits.

TEXTBOOKS:

- 1. K.R.Varmah, Chikku Abraham, Power Electronics, 1st edition, Elsevier, 2014
- 2. Ned Mohan, Undeland, Robbins, Power Electronics, 3rd edition, John Wiley, 2003

REFERNCES:

- 1. Daniel W. Hart, Power Electronics, McGrawHill, 2011
- 2. Muhammad H Rashid, Power Electronics, 3rd edition, Pearson, 2007
- 3. Joseph Vithayathil, Principles of Power Electronics, McGrawHill-1994

Course Plan							
	COURSE NO:06 EE 6 02 1 COURSE NAME: ANALYSIS OF POWER						
	COURSE NAME: ANALYSIS OF POWER	CRE	DITS:4				
	ELECTRONIC SYSTEMS I						
	CONTENT	Contact	End Sem				
		Hrs	Marks %				
MODULE	Overview of Power Semiconductor Devices:						
	Gverview of Fower Semiconductor Devices.						
	Ideal and Real switches - static and dynamic performance,						
	loss calculation and selection of heat sink. Power diode,						
I	Thyristor, Power BJT, Power MOSFET, IGBT - Static and	15	25%				
	Dynamic Performance, Driver circuits, Turn ON, Turn						
	OFF and Over Voltage Snubbers for switching devices.						
	Rectifiers: Line current Distortion, THD, DPF, PF, Form						
	factor, Ripple factor, Crest factor, active, reactive,						
	apparent and distortion power. Effect of Single Phase						
	Rectifiers on Neutral Currents in a Three Phase Four wire						
	System.						
	Controlled Destifiers Single phase and three phase. Helf						
	Controlled Rectifiers-Single phase and three phase- Half						
	wave, fully controlled and semi controlled - Analysis with						
	R, RL, RLE loads, RL and RLE loads with Freewheeling						
	Diode- Effect of source inductance – Inversion mode of						
	operation.Dual converters- Circulating and Non						
	circulating modes - Applications.						
	FIRST INTERNAL EXAM						
	DC Choppers		25%				
II	Principle of operation, analysis of single quadrant chopper,	13					
	two and four quadrant choppers, PWM control, Forced						
	commutation-Voltage and Current commutated choppers –						
	multiphase chopper.						
	AC voltage controllers and Cycloconverters						
III	Single Phase and Three phase AC Voltage Controllers-						
	Principle of operation-analysis with R and RL loads,	13					
	Thyristor Controlled Inductor. Cycloconveters: Circulating		25%				

	Teruta Teennological Chiversky		
	and Non circulating types - Analysis with R and RL loads.		
	SECOND INTERNAL EXAM		
	Single phase half bridge and full bridge inverters -		
	Analysis with R and RL loads. Three phase inverters - 120		
TX 7	and 180 degree conduction mode -Analysis with star	15	
IV	connected R load, Voltage control in inverters-Sine		25%
	triangle modulation- Unipolar and Bipolar modulation,		
	Reduction of Harmonics in inverters.Current source		
	inverter-Single phase and Three phase, Resonant inverters-		
	series and parallel, Multilevel Inverters-Type		
	END SEMESTER EXAM		•

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 6 03 1	ELECTRIC DRIVES	4-0-0: 4	2015
PRE – REQUI 1. Electrical M 2. Con			
COURSE OBJ	ECTIVES:		
To provide kno	owledge in fundamentals of Electric Drives pe	erformance an	d control
•	Control of Electric Drives, D.C. motor drives, Indu O.C. motor drives.	ection motor dr	ives, Synchronous
COURSE OUT	COME:		
The student sh	ould gain a workable knowledge in analyzing	Electric Driv	e Systems.
TEXTBOOKS			
1.G.K.Dubey,	"Fundamentals of Electrical Drives", Narosa	Publishers,20	01.
REFERNCES:			
1. Ion Boldera,	S.A.Nasar, "Electric Drives", Taylor and Fra	ncis Publishii	ng company.
2. VedamSubra	amanyam, "Electric Drives", Tata McGraw H	ill Publishing	Company.

	Course Plan		
MODULE	COURSE NO: 06 EE 6 03 1	L – T –	P: 4 - 0 - 0
	COURSE NAME: ELECTRIC DRIVES	CRE	DITS : 4
	CONTENT	Contact hrs	End Sem Marks %
I	Components of electrical Drives – electric machines, power converter, controllers - dynamics of electric drive - torque equation - equivalent values of drive parameters- components of load torques types of load - four quadrant operation of a motor — steady state stability – load equalization – classes of motor duty- determination of motor rating DC motor drives – dc motors & their performance (shunt, series, compound, permanent magnet motor, universal	14	25%
11	motor, dc servomotor) – braking – regenerative, dynamic braking, plugging –Transient analysis of separately excited motor – converter control of dc motors – analysis of separately excited & series motor with 1-phase and 3-phase converters		25%
	FIRST INTERNAL EXAM		
II	Dual converter –analysis of chopper controlled dc drives – converter ratings and closed loop control – transfer function of self, separately excited DC motors – linear transfer function model of power converters – sensing and feeds back elements – current and speed loops, P, PI and PID controllers – response comparison – simulation of converter and chopper fed DC drive	7	
III	Induction motor drives – stator voltage control of induction motor – torque-slip characteristics – operation with different types of loads – operation with unbalanced source voltages and single phasing – analysis of induction motor fed from non-sinusoidal voltage supply – stator frequency control – variable frequency operation – V/F control, controlled current and controlled slip operation – effect of harmonics and control of harmonics – PWM inverter drives	14	25%

-

	- multiquadrant drives - rotor resistance control - slip			
	torque characteristic - torque equations, constant torque			
	operation - slip power recovery scheme - torque equation			
	- torque slip characteristics - power factor - methods of			
	improving power factor - limited sub synchronous speed			
	operation – super synchronous speed operation.			
	SECOND INTERNAL EXAM			
	Synchronous motor drives – speed control of synchronous			
	motors – adjustable frequency operation of synchronous			
TT7	motors – principles of synchronous motor control – voltage	14		
IV	source inverter drive with open loop control – self		25%	
	controlled synchronous motor with electronic commutation			
	- self controlled synchronous motor drive using load			
	commutated thyristor inverter.			
END SEMESTER EXAM				

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 6 04	MODELING & ANALYSIS OF ELECTRICAL MACHINES	3-0-0: 3	2015
PRE – REQ	UISITES:		
	es of Electric & Magnetic Circuits vledge of construction & working of AC & D	OC Machines	
COURSE O	BJECTIVES:		
-	n in depth knowledge about modelling and an nachine theory.	nalysis of AC & DC m	achines using
SYLLABUS			
	l Concepts of Generalized Machine Theo Aodeling and analysis of Synchronous Mac chines		-
COURSE O	UTCOME:		
The students	will be able to		
	Aodel any electrical machine given its parameter form the steady state & transient analysis of		
TEXTBOOI	KS:		
1. PS. I	Bhimbra, Generalized Theory of Electrica	al Machines, Khanna	Publishers
2. Bima	al K Bose, Modern Power Electronics & A	AC Drives, Pearson	Education, 2002
REFERNCE	S:		
1. Krau	ss, Wasyncsuk and Sudholf, Analysis of	Electrical Machines	and Drive Systems
I. KIAU	Wiley, 2014		
		achines, 1975	

Course Plan				
	COURSE NO: 06 EE 6 04 1		P: 3 - 0 - 0	
	COURSE NAME: MODELING & ANALYSIS	CREDITS : 3		
	OF ELECTRICAL MACHINES			
	CONTENT	Contact hrs	End Sem Marks %	
MODULE		III S		
	Fundamentals of Generalised Machine Theory:			
	Introduction – Unified approach to the analysis of electrical			
	machine – basic two-pole machine – Kron's primitive			
Ŧ	machine – voltage, power and torque equation –linear	10	25%	
Ι	transformation from 3-phase to 2-phase - transformation			
	from rotating axes to stationary axes – power invariance –			
	park's transformation for 3-phase synchronous and			
	induction machines.			
	DC machines: Application of generalized theory to			
II	separately excited, shunt, series and compound machines -	5		
11	sudden short circuit of separately excited generator -		250/	
	FIRST INTERNAL EXAM		25%	
	DC machines: separately excited dc motor - steady state			
Π	and transient analysis - transfer functions of separately	5		
	excited dc generator & motor.			
	Synchronous machines: 3-phase synchronous machines –			
III	generalized machine equations - steady state analysis of			
	salient pole and non salient pole machines - phasor	10		
	diagrams – power angle characteristics – reactive power –			
			25%	
	Synchronous machines:Short circuit ratio – transient			
	analysis – sudden 3-phase short circuit at generator			
	terminals – reactance – time constants			
	SECOND INTERNAL EXAM Induction machines: 3-phase induction machine-			
	generalized model – voltage equation – steady state			
	analysis – equivalent circuit – torque-slip characteristics –	10		
IV	effect of voltage and frequency variations – electric		25%	
	transients in induction machines – speed control of		, v	
	induction motor – introduction to vector control – single			

END SEMESTER EXAM	<u> </u>	
torque equations – steady state analysis.		
phase induction motor – generalized model – voltage and		

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 6 15 1	SYSTEMS THEORY	3-0-0: 3	2015
2. Linear	Operations		
COURSE OB	JECTIVES:		
1. the ana	ends to provide knowledge in lysis of continuous time and discrete time line nov stability techniques.	ar systems	
Analysis of Co	ate Representations and Solution – Modeling on ontinuous time systems – Design of Continuou pility Techniques.		
COURSE OU	TCOME:		
A student who	completes the course will		
1. Be able	to do the analysis and design of continuous ti	me and discr	ete time linear
system: 2. Have a	s. n in depth knowledge of Lyapunov stability te	chniques.	
TEXTBOOKS	:		
1. C.T.Che	en, Linear system theory and design, New York, He	oltRinechart ar	nd Winston , 1984
2. M.Gopa	al, Digital Control and State Variable methods, TM	IH, 1997	
REFERNCES:			
1. Thomas Kai	ilath, Linear systems, Prentice Hall Inc		
2. K.Ogata, M	odern control Engg (Second Edition), Prentice Hal	ll Inc, 1990	
3. Richard.C.I	Oorf and R.T Bishop, Modern Control System, P.H	Ι.Ι	

	Course Plan				
MODULE	COURSE NO:06 EE 6 15 1	L-T-P	2: 3-0-0		
	COURSE NAME: SYSTEMS THEORY	CREE	DITS : 3		
	Contents	Contact Hrs	End Sem Marks %		
Ι	A Primer to State Representations and Solution: Concept of state, state variable, state space, state trajectory – Significance of eigen values and eigen vector – State Variable Representations – Diagonalization – Similarity transformations – State variable representation of discrete time systems – Discretization of continuous time systems – Solution of homogeneous and non homogeneous state equation.	10	25%		
Π	Modeling of Power Electronic Converters: State variable modeling of buck converter, boost converter.	5			
	FIRST INTERNAL EXAM				
П	Analysis of Continuous Time Systems: Controllability and Observability for continuous time systems. Kalman and Gilbert test for controllability and observability	5	25%		
III	Design of Continuous and Discrete Time Systems: Pole placement by state feedback – Design of state observers – Full order observer and reduced order observer.	10	25%		
	SECOND INTERNAL EXAM				
IV	Lyapunov Stability Techniques: Stability in the sense of Lyapunov – Concept of Asymptotic Stability and Exponential Stability – Local Stability and Global Stability – Lyapunov's indirect method (linearization method) – Lyapunov's direct method (second method) – Lyapunov's stability analysis of LTI continuous time and discrete time systems – Lyapunov's stability analysis of non linear system – Krasovski method.	12	25%		
	END SEMESTER EXAM				

COURSE NO:	E	COURSE NAME		CREDITS	YEAR
06 EE 6 25	51	POWER SEMICONDUCT DEVICES	OR	3-0-0: 3	2015
PRE – REQ	OUIS	TES:			
		v power semiconductor devices			
COURSE (•			
			onductor de	vices	
1 o provide i	in dep	th knowledge about the power semic	conductor de	evices	
SYLLABU	S:				
Power swi	tchin	g devices overview, Current Cor	ntrolled De	vices, Voltag	ge Controlle
Devices, Fi	iring	and Protection Circuits.			
COUDEE		SOME.			
COURSE (
		Il be able toacquire knowledge of ver converters.	power sem	iconductor de	evices which
ТЕХТВОО	OKS:				
1.	Ned	Mohan, Undeland, Robbins, Pow	er Electron	ics,3 rd edition	ı, John
		y, 2003 akian J G et al, Principles of Pow	ar Flactron	ice Addison	Waslay
	1991	· •		ics, Addison	westey,
REFERNC	ES:				
1.	ВW	Williams, Principles and Eleme	nts of Pow	ver Electronic	s, Universit
	of St	rathclyde,Glasgow, 2006.			
2.	K.R.	Varmah, Chikku Abraham, Pow	er Electron	nics, 1 st editi	on, Elsevier
	2014				
3.	Alok	Jain, Power Electronics -Devices	, Circuits a	and MATLAH	3
	Simu	lations, Penram International, 20	10.		

	Course Plan		
	COURSE NO:06 EE 6 251	L - T - 1	P: 3 - 0 - 0
	COURSE NAME: POWER SEMICONDUCTOR	CREDITS : 3	
MODULE	DEVICES		
	CONTENT	Contact hrs	End Sem Marks %
	Introduction: Power switching devices overview –		
	Attributes of an ideal switch, Device selection strategy -		
	On-state and switching losses - EMI due to switching -		
т	Power diodes – Types - switching characteristics – rating.	10	25%
Ι	Schottky Diode		
	Current Controlled Devices: BJT's – Construction,		
II	Device Physics, static characteristics, switching	6	
	characteristics; Negative temperature co-efficient and		25%
	secondary breakdown; Power Darlington		
	FIRST INTERNAL EXAM		
	Thyristors – Physical and electrical principle underlying		
II	operation, Gate and switching characteristics; converter	5	
	grade and inverter grade and other types.		
	Voltage Controlled Devices: Power MOSFETs and		
III	IGBTs – Principle of voltage controlled devices,	11	
	construction, types, Device physics, Static and Switching		
	Characteristics- Steady state models of MOSFET and		25%
	IGBTs		
	SECOND INTERNAL EXAM		
	Firing and Protection Circuits:		
	Designofsnubbers, Necessity of isolation, pulse		
IV	transformer, optocoupler – Gate driver circuit: SCR,	10	
L V	MOSFET,IGBTs and base driving for power BJT. Over		25%
	voltage, over current and gate protections;Thermal		
	Protection:Heat transfer - conduction, convection and		
	radiation; Cooling – liquid cooling, vapour – phasecooling;		
	Guidance for hear sink selection -heat sink types and		
	design – Mounting types.		
	END SEMESTER EXAM		

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 6 35 1	DIGITAL SIMULATION OFPOWER ELECTRONIC SYSTEMS	3-0-0: 3	2015
PRE – REQUI	SITES:		
1.Power	Electronics		
2.Electr	ic Drives		
3.Know	ledge in MATLAB software		
COURSE OBJ	ECTIVES:		
To provide an in	a depth knowledge about modelling of Power Electro	nic Circuits a	nd to
analyze the bel	naviour and performance of Power Electronic circui	ts	
SYLLABUS			
Application of	numerical methods to solve transients in D.C; Ex	tension to AC	circuits;
Modelling of I	Power semiconductor switches using simulation; In	troduction to	electrical
machine mode	elling; Simulation of basic electric drives; stabil	ity aspects;	Dynamic
modelling and	simulation of DC-DC converters using MATLA	B;Simulation	of single
phase and thre	e phase uncontrolled and controlled (SCR) rectifier	s; Simulation	of power
factor correction	on schemes; Simulation of converter fed dc motor	drives ; Simu	lation of
thyristor chop	pers; Simulation of single and three phase inverte	ers with thyris	stors and
self-commutat	ed devices.		

COURSE OUTCOME:

The students will be able to

- 1. Model Power Electronic Circuits.
- 2. Analyze the behavior of Power Electronic Circuits

TEXTBOOKS:

1.Power Electronics Devices, Circuits and Applications: Muhammed H Rashid2.Simulink Reference Manual, Math works, USA

REFERNCES:

 Robert Ericson, 'Fundamentals of Power Electronics', Chapman & Hall, 1997.
 IssaBatarseh, 'Power Electronic Circuits', John Wiley, 2004Simulink ReferenceManual, Math works, USA.
 Jai P. Agrawal, *Power Electronic Systems-Theory and Design*, Pearson- 2001

	Course Plan			
	COURSE NO:06EE 635 1	L - T - P : 3 - 0 - 0		
	COURSE NAME: DIGITAL SIMULATION OFPOWER ELECTRONIC SYSTEMS		CREDITS : 3	
MODULE	CONTENT	Contact hrs	End SemMa rks %	
	Review of numerical methods. Application of numerical			
	methods to solve transients in D.C.Switched R, L, R-L, R-			
	C and R-L-C circuits. Extension to AC circuits. Modelling			
т	of diode in simulation. Diode with R, R-L, R-C and R-L-C	10	25%	
Ι	load with ac supply. Modelling of SCR, TRIAC, IGBT and			
	Power Transistors in simulation. Simulation of gate/base			
	drivecircuits, simulation of snubber circuits.			
	State space modelling and simulation of linear systems.			
Π	Introduction to electrical machinemodelling: induction,	5		
•••	DC, and synchronous machines,		25%	
	FIRST INTERNAL EXAM			
	Simulation of basic electric drives, stability aspects.			
II	Dynamic modelling and simulation of DC-DC converters	5		
	using MATLAB			
	Simulation of single phase and three phase uncontrolled			
III	and controlled (SCR) rectifiers, converters with self	10		
	commutated devices- simulation of power factor correction	10		
	schemes, Simulation of converter fed dc motor drives			
	,Simulation of thyristor choppers with voltage, current and		25%	
	load commutation schemes, Simulation of chopper fed dc			
	motor. SECOND INTERNAL EXAM			
	Modelling and simulation of inverters using			
	MATLAB.Simulation of single and three phase inverters			
TX 7	with thyristors and self-commutated devices, Space vector	10		
IV	representation, pulse-width modulation methods for		25%	
	voltage control, waveform control. Simulation of inverter			
	fed induction motor drives.			
	END SEMESTER EXAM	I	l	

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 6 45 1	ENERGY MANAGEMENT IN ELECTRICAL SYSTEMS	3-0-0: 3	2015

PRE – REQUISITES:

Fundamental knowledge of electrical engineering and its applications

COURSE OBJECTIVES:

- 1. Enable the students to understandpractical methods of Energy Auditing
- 2. Prepare the students for a successful career in energy management in electrical systems.
- 3. Enable the students to evaluate energy losses and devise methods to save energy and save our energy resources.

SYLLABUS

Introduction to energy scenario, Introduction to energy management and the related terminologies, Application of energy management in the field of electric motor drives, Application of energy management in the field of transformers and lighting, Reactive power management, peak demand control and load scheduling, Cogeneration, Application of energy management in the field of refrigeration, air conditioning, electrolytic process and water heating, Introduction to Energy management software.

COURSE OUTCOME:

The students will be able to

- 1. Conduct energy audit in electrical systems.
- 2. Judge the energy efficiency of electrical systems.
- 3. Assess the energy performance of home and utility and suggest remedies so as to save money.

TEXTBOOKS & REFERENCES

- 1. Handbook on Energy Audit and Environment Management, Y P Abbi and Shashank Jain, TERI, 2006
- 2. Handbook of Energy Audits Albert Thumann , William J. Younger , Terry Niehus , 2009
- 3. Howard E. Jordan, .Energy-Efficient Electric Motors and Their Applications., Plenum Pub Corp; 2nd edition (1994)
- 4. Albert Thumann , .Handbook of Energy Audits., Fairmont Pr; 5th edition (1998)
- 5. Albert Thumann, P.W, -.Plant Engineers and Managers Guide to Energy Conservation. -Seventh Edition-TWI Press Inc, Terre Haute, 2007.
- 6. IEEE Recommended Practices for Energy Management in Industrial and Commercial Facilities
- 7. http://www.beeindia.in/energy_managers_auditors/documents/guide_books/

COURSE NO:06 EE 6451		
COURSE NO.00 EE 0431	L - T - 1	$\mathbf{P}:3-0-0$
COURSE NAME: ENERGY MANAGEMENT IN ELECTRICAL SYSTEMS	CREDITS : 3	
CONTENT	Contact hrs	End Sem Marks %
Definition and objectives of energy management - energy scenario- requirements for a successful energy management program – steps in energy action planning-role of an energy manager in an organization-energy accounting -energy monitoring, targeting and reporting-energy audit process. Energy auditing: Types and objectives-audit instruments Electricity tariff types –case study.	8	25%
Electric motor:Energy efficient controls and starting efficiency- Motor Efficiency and Load Analysis- Energy efficient /high efficient Motors-Case study; Load Matching and selection of motors.	7	25%
FIDST INTEDNAL EXAM		
Variable speed drives: Pumps and Fans-Efficient Control strategies- Optimal selection and sizing -Optimal operation and Storage; Case study	5	
 Transformer Loading/Efficiency analysis, Feeder/cable loss evaluation, case study. Reactive Power management: Capacitor Sizing-Degree of Compensation-Capacitor losses-Location-Placement-Maintenance, case study. Peak Demand controls- Methodologies-Types of Industrial loads-Optimal Load scheduling-case study. Lighting- Energy efficient light sources-Energy conservation in Lighting Schemes- Electronic ballast-Power quality issues-Luminaries, case study. 	12	25%
SECOND INTERNAL EXAM		
Cogeneration:Types and Schemes-Optimal operation of cogeneration plants-case study; Electric loads of Air conditioning & Refrigeration-Energy conservation measures- Cool storage. Types-Optimal operation-case study; Electric water heating-Geysers-Solar Water Heaters- Power Consumption in Compressors, Energy conservation measures; Electrolytic Process; Computer Controls- software-EMS	10	25%
	ELECTRICAL SYSTEMS CONTENT Definition and objectives of energy management - energy scenario- requirements for a successful energy management program – steps in energy action planning-role of an energy manager in an organization-energy accounting -energy monitoring, targeting and reporting-energy audit process. Energy auditing: Types and objectives-audit instruments Electricity tariff types –case study. Electric motor:Energy efficient controls and starting efficiency-Motor Efficiency and Load Analysis- Energy efficient /high efficient Motors-Case study; Load Matching and selection of motors. Variable speed drives: Pumps and Fans-Efficient Control strategies- Optimal selection and sizing -Optimal operation and Storage; Case study. Transformer Loading/Efficiency analysis, Feeder/cable loss evaluation, case study. Reactive Power management: Capacitor Sizing-Degree of Compensation-Capacitor losses-Location-Placement-Maintenance, case study. Peak Demand controls- Methodologies-Types of Industrial loads-Optimal controls ballast-Power quality issues-Luminaries, case study. Lighting Schemes- Electronic ballast-Power quality issues-Luminaries, case study. SECOND INTERNAL EXAM Cogeneration:Types and Schemes-Optimal operation of cogeneration plants-case study; Electric loads of Air conditioning & Refrigeration-Energy conservation measures- Cool storage. Types-Optimal operation-case study; Electric water heating-Geysers-Solar Water Heaters-Power Consumption in Compressors, Energy conservation	ELECTRICAL SYSTEMSContext hrsCONTENTContact hrsDefinition and objectives of energy management - energy scenario- requirements for a successful energy management program - steps in energy action planning-role of an energy manager in an organization-energy accounting -energy monitoring, targeting and reporting-energy audit process. Energy auditing: Types and objectives-audit instruments Electric motor:Energy efficient controls and starting efficiency- Motor Efficiency and Load Analysis- Energy efficient /high efficient Motors-Case study:7Variable speed drives: Pumps and Fans-Efficient Control strategies- Optimal selection and sizing -Optimal operation and Storage; Case study.5Transformer Loading/Efficiency analysis, Feeder/cable loss evaluation, case study.12Peak Demand controls- Methodologies-Types of Industrial loads-Optimal Load scheduling-case study.12Deak Demand controls- Belextonic ballast-Power quality issues- Luminaries, case study.10Peak Demand controls- Controls ballast-Power quality issues- Luminaries, case study.10Peak Demand controls- Methodologies-Types of Industrial loads-Optimal Load scheduling-case study.10Peak Demand controls- Methodologies-Types of Industrial loads-Optimal Load scheduling-case study.10Picture ENCOND INTERNAL EXAM10Cogeneration:Types and Schemes-Optimal operation of cogeneration plants-case study; Electric loads of Air conditioning & Refrigeration-Energy conservation measures- Cool storage. Types-Optimal operation cond measures; Electrolytic Process; Computer Controls- software-EMS10

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 6 06 1	RESEARCH METHODOLOGY	0-2-0:2	2015
	SITES: dge of sampling and probability theory. knowledge in Data analysis and interpretatio	n	
COURSE OBJ	IECTIVES:		
To provide an i	n depth knowledge in Research Activity.		
SYLLABUS:			
-	earch, Literature review, problem definition, stics, Presentation of reports.	Sampling theo	ory, Descriptive and
COURSE OU	ГСОМЕ:		
The student	s achieve knowledge in various stages of res	earch activity.	
TEXTBOOKS	:		
1. Research Me	thodology: Methods and techniques, C. R. I	Kothari ,2 nd Ec	lition 2004
2. Research Me	thodology, Pannerselvam ,2 nd Edition ,PHI 2	2014	
REFERNCES	:		
	t Research Methodology : K. N. Krishnaswa ion, Delhi, 2010	ami, AppaIyei	and M Mathirajan,
2. Research Me	thodology: Ranjit Kumar, Pearson Education	n, Delhi, 2009	

	Course Plan		
	COURSE NO:06 EE 6 06 1		P: 0-2-0
	COURSE NAME: RESEARCH METHODOLOGY		DITS:2
MODULE	CONTENT	Contact hrs	End Sem Marks%
	Meaning of research:		
I	Types of research, research methods Vs methodology - stages of research process – Issues of research progress in India - Research in social science and management. Literature review – Problem definition- Research design for exploratory, descriptive and experimental research – Brief introduction to completely randomized design, randomized block design and Latin square designs (description only).	7	25%
	Census Vs sample studies:		
II	Types of sampling: probability and non-probability sampling. Sampling theory, sampling distribution and sample size determination	3	25%
	FIRST INTERNAL EXAM		
п	Tools and techniques of data collection: Questionnaire and schedule for field surveys, interview, observation, simulation, experimental and case study methods. Collection, recording, editing, coding and scaling of data. Scale classification and types. Measurement of validity, reliability and practicality. Cronbach's Alpha	4	
	Descriptive and inferential statistics:		
Π	Data analysis and interpretation –testing of hypothesis, testing of population mean, variance and proportion –Z test – t test – F test - chi square test. Test for correlation and regression –standard error of the estimate. Testing goodness of fit. Brief introduction to non parametric tests, factor analysis, discriminant analysis and path analysis (description only). Use of SPSS and other software.	7	25%
	SECOND INTERNAL EXAM		
IV	Meaning of interpretation and inference : importance and care for interpreting results. Presentation of reports: popular reports and technical reports - structure and style. Oral and written presentations: Parts of a research report in the program specific area. Methods of giving references and appendices: referencing styles – use of computers and internet in research.	7	25%

activities in the area Power Electronics, Industrial drives and Control. END SEMESTER EXAM		
Sample studies and survey on the recent research		
	1	

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 6 07 1	SEMINAR I	0-0-2:2	2015

PRE – REQUISITES:Nil

COURSE OBJECTIVES:

To improve presentation skills and searching ability of research publications in the relevant area of specialization

SYLLABUS:

The student has to register for the seminar and select a topic in consultation with any of the faculty members in the department (or the faculty member offering courses for the programme).

A detailed report on the topic of seminar is to be prepared in the prescribed format given by the department. The seminar shall be of 30 minutes duration and a committee with the Head of the Department as the chairman and two faculty members from the department as members shall evaluate the seminar based on the coverage of the topic, presentation and ability to answer the questions put forward by the committee.

COURSE OUTCOME:

Takers will

- (1) improve the searching ability to find research publications in the area of specialization
- (2) be aware of recent developments in the area of specialization
- (3) improve their presentation skills

Reference:

IEEE Xplore, Elsevier- Science Direct, Springer Journalsetc

7 4 4	RSE D:	COURSE NAME	CREDITS	YEAR
06 EE		POWER ELECTRONICS LAB	0-0-3:1	2015
PRE –	REQUIS	SITES:		
	Basic kn	owledge in Power Electronics circuits		
COUR	SE OBJI	ECTIVES:		
(1) To	model an	depth knowledge ad analyse different power converters and vario are modelling of different power converters and	-	t waveforms.
SYLLA	BUS			
	-	ing circuits and various power converters. B/Simulink and PSIM.	Simulation of p	ower converters
COUR	SE OUT	COME:		
The stu	dents wil	l be able to		
	Model p Simulate	he firing circuits and compare different method ower converter circuits and study its working. If the power converter circuits and observe the e and analyse the software and hardware results	waveforms.	
TEXTI	BOOKS:			
1.	K.R.Va	rmah, Chikku Abraham, Power Electronics	s, 1 st edition, Els	evier, 2014
2.	Muham	mad H Rashid, Power Electronics, 3 rd editi	ion, Pearson,200	07.
REFE	RENCES	:		
		bhan, Undeland, Robbins, Power Electronic	cs,3 rd edition, Jo	hn Wiley 2003
1.	Ned Mo	man, Underand, Kobbins, Fower Electionic		m , no, 2005.

	Course Plan	I		
COURSE NO:06 EE 6 08 1			- P : 0-0-3	
COURSE NAME:		CRE	CREDITS : 1	
OW	ER ELECTRONICS LAB			
	LIST OF EXPERIMENTS	Contact hrs	End Sen Marks %	
1.	Firing schemes for converters.			
2.	Single Phase Semi-converter with R-L and R-L-E loads for continuous and discontinuous conduction modes. Single phase full- converter with R-L and R-L-E loads			
3.	for continuous and discontinuous conduction modes.			
4.	Three phase full-converter with R-L-E load. Controlled and Uncontrolled rectifier with different types			
5.	of filters-continuous. And discontinuous modes of operation.			
6.	Transformer and Inductor design.			
7.	Voltage and current commutated choppers.			
8.	MOSFET, IGBT based Choppers.			
9.	IGBT and MOSFET based inverters.			
10.	Current source inverter.	20		
11.	Single phase AC voltage controller.	30	100 %	
12.	Light control using optocoupler.			
13.	Transfer function of a DC Motor.			
14.	Resonant Inverters.			
15.	Closed loop control of converter fed DC motor Drives.			
16.	VSI fed three phase induction motor drive.			
17.	Three phase synchronous motor and drive.			
18.	PC based control of power electronic devices.			
19.	Microcontroller and DSP based control of dc-dc converters.			
20.	Study of harmonic pollution by power electronics loads.			

At least 15 experiments in the list are to be conducted in the laboratory. Additional experiments and simulation assignments can also be given by the department.

END SEMESTER – EXAM

Semester II

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 6 01 2	ANALYSIS OF POWER	4-0-0:4	2015
	ELECTRONIC SYSTEMS II		
PRE – REQUI	SITES:		
	1 Fundamental concepts of power electronic	circuits	
	2 Characteristics of power semi conductor de	vices	
	3 Electric circuit theory&Network Analysis		
COURSE OBJ	ECTIVES:		
To provide an in circuits.	n depth knowledge about the operation and analy	vsis of modern po	ower converter
SYLLABUS			
Pulse width me	odulation(PWM) strategies for Inverters, DO	C-DC Switch M	Iode Converters ,
SMPS topolog	ies, Resonant Converters, PWM Rectifiers a	and Matrix Con	verters
COURSE OUT	TCOME:		
The students wi	ll be able to		
1		. ,,	
	e knowledge about the PWM techniques used in and analyze modern power converter circuits	inverter circuits	
2 Design	and analyze modern power converter circuits		
TEXTBOOKS	:		
1. Dar	niel W. Hart, Power Electronics, McGrawHi	ll, 2011	
2. Neo	d Mohan, Undeland, Robbins, Power Electro	onics,3 rd edition	, John Wiley, 2003

3. D. Grahame Holmes, Thomas A Lipo, Pulse Width Modulation for Power converters- Principles and Practice, John Wiley and sons,2003.

REFERNCES:

- 4. K.R.Varmah, Chikku Abraham, Power Electronics, 1st edition, Elsevier, 2014
- 5. B K Bose, Modern Power Electronics and AC Drives, Pearson Education, 2002.
- 6. William Shepherd, Li Zhang, Power Converter Circuits, Marcel Decker, 2004

	Course Plan		
	COURSE NO:06 EE 6 012	L – T –	P: 4 - 0 - 0
	COURSE NAME: ANALYSIS OF POWER ELECTRONIC SYSTEMS II	CREDITS : 4	
MODULE	CONTENT	Contact hrs	End Sem Marks %
	PWM Strategies for Inverters:		
Ι	Modulation of one inverter phase leg- Fundamental concepts of PWM- Naturally sampled PWM-Regular sampled PWM. Modulation of single and three phase voltage source inverters-introduction only, Space Vector	14	25%
	Modulation-comparison of SVM and regular sampled PWM, Overmodulation of an Inverter- Naturally sampled overmodulation of one leg of an inverter. Space vector		
	PWM for multilevel inverters.		
	DC-DC Switch Mode Converters:		
Π	DC-DC converters - Buck, Boost, Buck-Boost and Cuk converters, State space modeling of DC-DC converters.	5	25%
	FIRST INTERNAL EXAM		
II	SMPS Topologies - Transformer models- Basic Operation- Waveforms-modes of operation – Output voltage ripple, Push-Pull and Forward Converter Topologies-Basic	9	
	operation-Waveforms-Voltage Mode Control. Half and Full Bridge Converters - Basic Operation and Waveforms, Fly back Converter, Continuous and Discontinuous mode operation, Waveforms.		
	Module 3:Resonant Converters		
III	Classification of Resonant Converters, Basic Resonant Circuit Concepts, Load Resonant Converter, Resonant	14	
	Switch Converter, Zero Voltage Switching - Zero current switching - ZVS Clamped Voltage Topologies, Resonant		25%

Refuta Teefino	logical Oniversity	Cluster 1	
	dc-link inverters		
	SECOND INTERNAL EXAM		
	PWM Rectifiers and Matrix Converters:		
IV	Single phase and three phase PWM Rectifiers - Basic topologies - Control principles.	14	
IV	Introduction to Matrix Converters-Matrix converter switches and circuit- control strategies-Venturini control		25%
	method.		
	END SEMESTER EXAM	•	

OG EE 6 02 2 ADVANCED CONTROL OF AC DRIVES 3-0-0: 3 2015 PRE - REQUISITES: 1 Basics of Electric & Magnetic Circuits 2 Knowledge of construction & working of AC & DC Machines 3 Generalised Machine Theory COURSE OBJECTIVES: To provide an in depth knowledge about analysis and speed control of three phase induction machines. SYLLABUS: Modeling of Induction Machines, Vector Control, Slip ring induction motor control, Sensorless Control Sensorless Control COURSE OUTCOME: The students will be able todesign and analyze different advanced control schemes of induction machines. TEXTBOOKS & REFERENCES : 1 R Krishnan, Electric Motor Drives, PHI PRE - REQUISITES Advanced Control in Power Electronics-Selected Problems, Academic Press, 2002 B K Bose, Modern Power Electronics and AC Drives, Pearson-2002. Azamiericowski, Krishnan, Blaabjerg, Control in Power Electronics-Selected Problems, Academic Press, 2002 4. J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, August 2002, PP 1359-1394	COURSE NO:	COURSE NAME	CREDITS	YEAR
 Basics of Electric & Magnetic Circuits Knowledge of construction & working of AC & DC Machines Generalised Machine Theory COURSE OBJECTIVES: To provide an in depth knowledge about analysis and speed control of three phase induction machines. SYLLABUS: Modeling of Induction Machines, Vector Control, Slip ring induction motor control, Sensorless Control COURSE OUTCOME: The students will be able todesign and analyze different advanced control schemes of induction machines. TEXTBOOKS & REFERENCES : R Krishnan, Electric Motor Drives, PHI B K Bose, Modern Power Electronics and AC Drives, Pearson-2002. Kazmierkowski, Krishnan, Blaabjerg, Control in Power Electronics-Selected Problems, Academic Press, 2002 J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, 		ADVANCED CONTROL OF AC DRIVES	3-0-0: 3	2015
 Knowledge of construction & working of AC & DC Machines Generalised Machine Theory COURSE OBJECTIVES: To provide an in depth knowledge about analysis and speed control of three phase induction machines. SYLLABUS: Modeling of Induction Machines, Vector Control, Slip ring induction motor control, Sensorless Control COURSE OUTCOME: The students will be able todesign and analyze different advanced control schemes of induction machines. TEXTBOOKS & REFERENCES: R Krishnan, Electric Motor Drives, PHI B K Bose, Modern Power Electronics and AC Drives, Pearson-2002. Kazmierkowski, Krishnan, Blaabjerg, Control in Power Electronics-Selected Problems, Academic Press, 2002 J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, 	PRE – REQUI	SITES:		
To provide an in depth knowledge about analysis and speed control of three phase induction machines. SYLLABUS: Modeling of Induction Machines, Vector Control, Slip ring induction motor control, Sensorless Control COURSE OUTCOME: The students will be able todesign and analyze different advanced control schemes of induction machines. TEXTBOOKS & REFERENCES : 1. R Krishnan, Electric Motor Drives, PHI 2. B K Bose, Modern Power Electronics and AC Drives, Pearson-2002. 3. Kazmierkowski, Krishnan, Blaabjerg, Control in Power Electronics-Selected Problems, Academic Press, 2002 4. J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE,	2 Knowle	edge of construction & working of AC & DC Mac	hines	
 machines. SYLLABUS: Modeling of Induction Machines, Vector Control, Slip ring induction motor control, Sensorless Control COURSE OUTCOME: The students will be able todesign and analyze different advanced control schemes of induction machines. TEXTBOOKS & REFERENCES : R Krishnan, Electric Motor Drives, PHI B K Bose, Modern Power Electronics and AC Drives, Pearson-2002. Kazmierkowski, Krishnan, Blaabjerg, Control in Power Electronics-Selected Problems, Academic Press, 2002 J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, 	COURSE OBJ	ECTIVES:		
 Modeling of Induction Machines, Vector Control, Slip ring induction motor control, Sensorless Control COURSE OUTCOME: The students will be able todesign and analyze different advanced control schemes of induction machines. TEXTBOOKS & REFERENCES : R Krishnan, Electric Motor Drives, PHI B K Bose, Modern Power Electronics and AC Drives, Pearson-2002. Kazmierkowski, Krishnan, Blaabjerg, Control in Power Electronics-Selected Problems,Academic Press, 2002 J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, 	•	n depth knowledge about analysis and speed contro	ol of three phas	se induction
 Sensorless Control COURSE OUTCOME: The students will be able todesign and analyze different advanced control schemes of induction machines. TEXTBOOKS & REFERENCES : R Krishnan, Electric Motor Drives, PHI B K Bose, Modern Power Electronics and AC Drives, Pearson-2002. Kazmierkowski, Krishnan, Blaabjerg, Control in Power Electronics-Selected Problems, Academic Press, 2002 J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, 	SYLLABUS:			
 The students will be able todesign and analyze different advanced control schemes of induction machines. TEXTBOOKS & REFERENCES : R Krishnan, Electric Motor Drives, PHI B K Bose, Modern Power Electronics and AC Drives, Pearson-2002. Kazmierkowski, Krishnan, Blaabjerg, Control in Power Electronics-Selected Problems, Academic Press, 2002 J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, 	-		ion motor cont	rol,
 machines. TEXTBOOKS & REFERENCES : R Krishnan, Electric Motor Drives, PHI B K Bose, Modern Power Electronics and AC Drives, Pearson-2002. Kazmierkowski, Krishnan, Blaabjerg, Control in Power Electronics-Selected Problems, Academic Press, 2002 J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, 	COURSE OUT	ГСОМЕ:		
 R Krishnan, Electric Motor Drives, PHI B K Bose, Modern Power Electronics and AC Drives, Pearson-2002. Kazmierkowski, Krishnan, Blaabjerg, Control in Power Electronics-Selected Problems, Academic Press, 2002 J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, 		Ill be able todesign and analyze different advanced	control schem	es of induction
 B K Bose, Modern Power Electronics and AC Drives, Pearson-2002. Kazmierkowski, Krishnan, Blaabjerg, Control in Power Electronics-Selected Problems, Academic Press, 2002 J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, 	TEXTBOOKS	& REFERENCES :		
 Kazmierkowski, Krishnan, Blaabjerg, Control in Power Electronics-Selected Problems, Academic Press, 2002 J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, 	1. R Kris	hnan, Electric Motor Drives, PHI		
Problems, Academic Press, 20024. J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE,	2. B K B	ose, Modern Power Electronics and AC Drives	s, Pearson-200	02.
4. J Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE,	3. Kazmi	erkowski, Krishnan, Blaabjerg, Control	in Power	Electronics-Selected
	Proble	ms,Academic Press, 2002		
August 2002, PP 1359-1394	4. J Holt	z, Sensorless Control of Induction Motor D	rives, Procee	dings of the IEEE,
	Augus	t 2002, PP 1359-1394		

Course Plan				
COURSE NO: 06 EE 6 02 2		L - T - P : 3 - 0 - 0		
	COURSE NAME: ADVANCED CONTROL OF AC DRIVES		CREDITS : 3	
MODULE	CONTENT	Contact hrs	End Sem Marks %	
	Modeling: Dynamic d-q modeling of induction machines			
Ι	- stator, rotor and synchronously rotating reference frame			
-	models, state space equations and dynamic simulation,			
	Space Phasor model-control principle of the induction	11	25%	
	motor			
	Vector Control: Vector controlled induction motor drive			
Π	- Basic principle-Direct Rotor flux oriented vector control	6		
••	- Estimation of rotor flux and torque - Implementation		25%	
	with current source and voltage source inverters Stator		2070	
	flux oriented vector control			
	FIRST INTERNAL EXAM			
	Vector Control: Indirect rotor flux oriented vector control			
II	scheme implementation– tuning - Dynamic	5		
	simulation.Parameter sensitivity and compensation of vector			
	controlled induction motors-Selection of Fluxlevel - Flux weakening operation - Speed controller design,comparison of			
	DTC and FOC			
	Slip Ring Induction Motor Control: Doubly-fed			
III				
	achine speed control by rotor rheostat – static kramer		25%	
	drive – phasor diagram, equivalent – speed control – power			
	factor improvement – Static Scherbius drive – Modes			
	ofoperation - Direct torque control of induction motor -			
	principle – control strategy – spacevector modulation –			
	reduction of torque and flux ripple			
	SECOND INTERNAL EXAM Sensor less Control: Principles for speed sensor less			
TT 7	ntrol - Sensor less methods for scalar control, Sensor			
IV	less methods for vector control, Introduction to observer	10	25%	
	based techniques			
	END SEMESTER EXAM			

COURSE NO:	COURSE NAME	CREDITS	YEAR			
06 EE 6 03 2	SPECIAL ELECTRICAL MACHINES AND DRIVES	3-0-0: 3	2015			
 PRE – REQUISITES: 1. Construction, Characteristics & working of AC & DC Machines 2. Different Control System and Microprocessor 						
COURSE OBJ To expose the their control sc	students to the concepts of various types of sp	ecial electrica	al machines and			
SYLLABUS						
	Principle, Characteristics and different control tance motor, Permanent Magnet Brushless DC notor.		11			
COURSE OUT	COME:					
The students wi	l be able to					
implem	e various special electrical machines by the se tentation of the established principles, procedu e the different control scheme of special electron	ires and pract	ices			
 TEXTBOOKS: 1. Kenjo T, Sugawara A, Stepping Motors and Their Microprocessor Control, Clarendon Press, Oxford, 1994 2. Miller T J E, Switched Reluctance Motor and Their Control, Clarendon Press, Oxford, 1993. 3. Miller T J E, Brushless Permanent Magnet and Reluctance Motor Drives, Clarendon Press, Oxford, 1989. 						
REFERNCES:	REFERNCES:					
	 Kenjo T, Power Electronics for the Microprocessor Age, Oxford University Press, 1990. R Krishnan, Electric Motor Drives – Modeling, Analysis and Control, PHI, 2003. 					

.

	COURSE NO: 06 EE 6 03 2	L – T	-P: 3-0	
	COURSE NAME : SPECIAL ELECTRICAL MACHINES AND DRIVES	CR	CREDITS : 3	
MODULE	CONTENT	Cont act hrs	End Sem Marks %	
	Stepper Motors - Constructional features, principle of			
	operation, modes of excitation, single phase stepping motors,			
	torque production in variable Reluctance (VR) stepping			
т	motor, Static and Dynamic characteristics, Drive systems and	10	25%	
Ι	circuit for open loop control, Closed loop control of stepping			
	motor, microprocessor based controller			
	Switched Reluctance Motors - Constructional features,			
II	principle of operation. Torque equation, Power controllers,	6		
	Characteristics and control.		25%	
	FIRST INTERNAL EXAM		2370	
	Microprocessor based controller. Sensor less control.			
II	Synchronous Reluctance Motors-Constructional features:	6		
	axial and radial air gap Motors. Operating principle,			
	reluctance torque – Phasor diagram, motor characteristics			
	Permanent Magnet Brushless DC Motors - Commutation in			
III	DC motors, Difference between mechanical and electronic	10		
	commutators, Hall sensors, Optical sensors, Multiphase	10		
	Brushless motor, Square wave permanent magnet brushless			
	motor drives, Torque and emf equation, Torque-speed		25%	
	characteristics, Controllers-Microcontroller based control.			
	Sensorless control.			
	SECOND INTERNAL EXAM Permanent Magnet Synchronous Motors - Principle of			
	operation, EMF, power input and torque expressions, Phasor			
** 7	diagram, Power controllers, Torque speed characteristics, Self	10		
IV	control, Vector control, Current control schemes. Sensor less		25%	
	control.			
	END SEMESTER EXAM			

COURSE NO:	COURSE NAME	CREDITS	YEAR			
06 EE 6 14 2	POWER QUALITY	3-0-0: 3	2015			
COURSE OBJEC	CTIVES:					
1. To study the various issues affecting power quality, their production, suppression						
and mitigation.		1				
Ũ	production of voltages sags, over	ervoltages an	d harmonics and			
methods		U				
of control.						
	d the effects of various power qu	ality phenor	nenon in various			
equipments	a me entens of various power q	aunty phonor				
	their mitigation using custom power c	levices such a	e distribution static			
	ATCOM), dynamic voltage restorer (D		s distribution static			
compensator (DST	ATCOM), dynamie vonage restorer (D	v K).				
SYLLABUS						
Introduction to Ele	ectric power quality phenomena, Transi	ent Overvolatg	ges - Types, sources			
and mitigation, G	rounding Problems And Solutions, H	Harmonics -So	ources, effects, and			
mitigation methods	s, Voltage sags & interruptions – source	s & mitigation	methods.			
COURSE OUTCO	OME:					
Upon successful	completion of this course, students	will be able	to understand the			
basic power qual	ity issues, their sources and effects	on power sy	stem. This course			
helps to gain know	wledge about the various mitigation	n methods cu	stom power devices			
such as distribution	n static compensator (DSTATCOM), dy	namic voltage	restorer (DVR).			
DEFEDENCES						
REFERENCES: 1. "Electrical Powe	er Systems Quality" by Roger C Dugan,	Mark. F.McG	rananaghan- 2nd			
Edition - McGra	aw Hill Publications.					
2. "Understanding	Power Quality Problems" by Math H J	Bollen - IEEE	Press			
3.Selected Topics	in Power Quality and Custom Power	r, Course boo	k for STTP, 2004			
Ashok S						
4. Harmonics and	power systems "- Francisco C. De La F	Rosa Published	in 2006 byCRC			
Press Taylor & Fra	incis Group					
5. "FACTS contro	llers in power transmission and distrib	oution" -K.R H	Padiyar -New Age			
International.						

	COURSE NO:06 EE 6 14 2	L - T - P	: 3 - 0 - 0
MODULE	COURSE NAME: POWER QUALITY	CRED	ITS:3
MODULL	CONTENT	Contacth rs	End Sem Marks %
Ι	Electric power quality phenomena IEC and IEEE definitions-General classes of power frequency variations- Transients-Long duration voltage variations-Short duration voltage variations-voltage imbalance-Wave form distortion-voltage fluctuations-power frequency variations- Power quality terms-Power Quality Standards and Guidelines.	7	25%
II	Transients-Impulsive transients-oscillatory transients- Sources of transient over voltages	4	
	FIRST INTERNAL EXAM		
II	Devices for overvoltage protection-switching transient problems with load. Grounding- Definition - reasons for grounding-Wiring and grounding problems –solutions for wiring and grounding problems.	5	25%
III	Harmonics:- Definition –harmonic distortion harmonic phase sequences – triplen harmonicsSources of harmonics-Effects of Harmonics-Harmonic Standard-The IEC Standard-IEEE 519-1992- Harmonic Indices-Power system quantities under non sinusoidal conditions:- Active, reactive and apparent Power - power factor- displacement and true power factor-Harmonic distortion evaluation .Harmonic resonance-series and parallel	15	25%
	Passive filters-Active Harmonic Filtering-Shunt Injection Filter for single phase , three-phase three-wire and three- phase four-wire systems . d-q domain control of three phase shunt active filters.Series active power filtering techniques for harmonic cancellation and isolation.		
	SECOND INTERNAL EXAM		
IV	Voltage sag and interruptions-sources of voltage sag and interruptions-Estimating voltage sag performance - Equipment sensitivity to voltage sag- CBEMA and ITIC curve		
	-Fundamental principles of protection-solutions at the end user level-sags due to starting of induction motor DStatcom-Dynamic voltage restorer-unified power quality conditioners.	11	25%
	END SEMESTER EXAM		•

COURSE NO:	COURSE NAME	CREDITS	YEAR				
06 EE 6 24 2	ADAPTIVE CONTROL	3-0-0: 3	2015				
PRE – REQUISI	TES:						
 Basics of Automatic Control Basics of Sampled data systems 							
COURSE OBJE	CTIVES:						
SYLLABUS:	Introduction to Adaptive Control, Model-Reference Adaptive Systems, Self-Tuning						
COURSE OUTC	-						
	The students will be able tograsp the basic ideas of adaptive control and compare the different approaches in adaptive control						
 TEXTBOOKS & REFERNCES: 1. Karl J. Astrom& Bjorn Wittenmark, 'Adaptive Control', Pearson Education (Singapore), Second Edition, 2003. 2. Petros A Ioannou, Jing, Robust Adaptive Control, Prentice-Hall, 1995 							

	Course Plan		
	COURSE NO:06 EE 6 24 2	L - T - I	$\mathbf{P}:3-0-0$
	COURSE NAME: ADAPTIVE CONTROL	CREDITS : 3	
	CONTENT	Contact hrs	End Sem Marks %
MODULE			
	Introduction to Adaptive Control: effects of process		
	variation-Adaptive schemes-Adaptive Control problem-	11	250/
	Applications Real-Time Parameter Estimation-	11	25%
Ι	Introduction-Least Squares and Regression Models-		
L	Estimating-Parameters in Dynamical Systems		
	Model-Reference Adaptive Systems: Introduction-The		
II	MIT Rule-Determination of the Adaptation Gain-	11	25%
11	Lyapunov Theory-Design of MRAS Using Lyapunov		
	Theory-Bounded-Input-Bounded-Output Stability-		
	Applications to Adaptive control		
	FIRST INTERNAL EXAM		
	Self-Tuning Regulators: Introduction-Pole Placement		
	Design-Indirect Self-tuning Regulators-Continuous Time		
TTT	Selftuners-Direct Self-tuning Regulators-Disturbances	10	25%
III	with Known Characteristics-Relations between MRAS		
	and STR		
	SECOND INTERNAL EXAM		
	Gain Scheduling: Introduction- Principle and Design of		
IV	Gain Scheduling controllers-Nonlinear Transformations		
ŢŴ	applications of Gain Scheduling. Practical Issues and	10	25%
	Implementation-Controller and estimator implementation-		
	operational issues.		
	END SEMESTER EXAM		

COURSE NO:	COURSE NAME	CREDITS	YEAR				
06 EE 6 34 2	ADVANCED DIGITAL SIGNAL	3-0-0: 3	2015				
	PROCESSING						
PRE – REQUISITES:							
-	Fundamentals of signals and systems						
COURSE OBJ	ECTIVES:						
To provide an ir	n depth knowledge in the area of digital signal proc	cessing					
	and correlation, Fast Fourier transform, ructures, Analysis of Finite Word-length Effec	0	r Design and				
The students w (1)methods and	COURSE OUTCOME: The students will be able to (1)methods and problems related to digital signal processing (2)analyze and design digital filters						
Text Books &	References:						
1 John G. Pro	akis, and Dimitris G. Manolakis, Digital Signa	ll Processing(third edition),				
Prentice-Hall of	of India Pvt. Ltd, New Delhi, 1997.						
2. Emmanuel C	C. Ifeachor, Barrie W. Jervis, Digital Signal Pr	ocessing-A p	ractical				
Approach, Add	lison . Wesley,1993.						
3. Abraham Pe	led and Bede Liu, Digital Signal Processing, J	ohn Wiley ar	nd Sons, 1976.				
4. Oppenheim	4. Oppenheim and Schaffer, 'Discrete time Signal processing', PHI, 1999.						

	Course Plan			
	COURSE NO:06 EE 6 34 2	L - T - 1	P:3-0- 0	
MODULE	COURSE NAME: ADVANCED DIGITAL SIGNAL PROCESSING	CREDITS : 3		
	CONTENT	Contact hrs	End Sem Marks %	
Ι	Convolution and correlation-Sampling of continuous time signals- Discrete time Fourier transform- Discrete Fourier series- Discrete Fourier transform- Z- transform and Properties of different transforms. LTI systems- FIR and IIR systems-Unit sample response- system function- difference equation	10	25%	
II	Fast Fourier transform: Radix-2 FFT-Decimation in time and decimation in frequency algorithms- Circular and linear convolution and correlation of two finite length sequences using DFT/FFT -linear convolution through circular convolution and implementation. Sectioned convolutions, overlap add and overlap save method. : Spectral analysis of deterministic signals-bias- frequency resolution-Windowing of data.	6	25%	
	FIRST INTERNAL EXAM			
	Estimation of power spectrum of stationary random	5		
II	signals:-periodogram methods-Bartlett's method and Welch method of Power spectrum estimation.			
III	Digital Filter Design and Realization Structures: Design of IIR digital filters –Butterworth and Chebyshev filters- from analog filters- Impulse invariance method and Bilinear transformation method- FIR linear phase filter design using window functions- Basic IIR and FIR filter realization structures-direct, cascade and parallel realizations.	11		
			25%	
	SECOND INTERNAL EXAM			
IV	Analysis of Finite Word-length Effects Quantization process and errors- Coefficient quantization effects in IIR and FIR filters- A/D conversion noise- Arithmetic round- off errors- Dynamic range scaling- Overflow oscillations and zero input limit cycles in IIR filters. Effect of	10	25%	
	quantization noise in cascade and parallel operations. END SEMESTER EXAM			

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 6 442	ROBOTICS AND AUTOMATION	3-0-0: 3	2015
COURSE OBJI	ECTIVES:		
To provide a cor	nplete knowledge of robotics and automation		
SYLLABUS			
external sensor Direct and inve		oot programm e – Euler for	ing languages. mulation, joint
	acquire sound knowledge in robotics and automa	tion.	
Intellige 2. Wesley,	, Gonazlez R C and Lee C S G, Robotics (nce), McGraw-Hill, 1987. E Sryda, Industrial Robots: Computer Interfacing	g and Control.	PHI, 1985.
3. Asada a	nd Slotine, Robot Analysis and Control, John Wil	ley and Sons, 1	986.
REFERNCES: 1. Saeed B Education	Niku, Introduction to Robotics, Analysis, System, 2002.	ems and Appli	cations, Pearson
	M P, Mitchell Wesis, Industrial Robotic ications, Tata McGraw-Hill, 1986.	es Technology	y Programming

 Sciavicco L, B Siciliano, Modeling& Control of Robot Manipulators, 2nd Edition, Springer Verlag, 2000

	COURSE NO: 06 EE 644 2	L – T – F	
	COURSE NAME: ROBOTICS AND AUTOMATION	CRED	
MODULE	CONTENT	Contact hrs	End Sem Marks %
Ι	Geometric configuration of robots – Manipulators – Drive systems – Internal and external sensors-– End effectors – Control systems – Robot programming languages and applications –Introduction to robotic vision	10	25%
II	Robot Arm Kinematics Direct and inverse kinematics – Rotation matrices – Composite rotation matrices – Euler angle-representation – Homogenous transformation – DenavitHattenberg representation and various arm configurations.	11	25%
	FIRST INTERNAL EXAM		
III	Robot Arm Dynamics Lagrange – Euler formulation, joint velocities – Kinetic energy – Potential energy and motion-equations – Generalized D'Alembert equations of motion.	11	
	SECOND INTERNAL EXAM		25%
IV	SECOND INTERNAL EXAM Planning of Manipulator Trajectories General consideration on trajectory planning joint interpolation & Cartesian path trajectoriesControl of Robot Manipulators- PID control computed, torque technique – Near minimum time control – Variable structure control – Non-linear decoupled feedback control – Resolved motion control and adaptive control.	10	25%
	END SEMESTER EXAM		

COURSE NO:	COURSE NAME	CREDITS	YEAR
06EE 6 15 2	FACTS TECHNOLOGY	3-0-0: 3	2015

PRE – REQUISITES:

- 1. Electric Power Transmission and Distribution.
- 2. Power Electronic Converters.

COURSE OBJECTIVES:

To impart knowledge in FACTS equipment performance and in control of FACTS devices.

SYLLABUS:

Reactive power control in electric power transmission – Theory of Compensation – Types of FACTS controllers. Variable impedance type static VAR generators – STATCOM – operation and scheme of control. Series compensation – TSSC and TCSC – Stability enhancement and power oscillation damping using series compensators. Unified Power Flow Controller – Principle of operation – control structure – Interline Power Flow Controller – Generalized and Multifunctional FACTS controllers.

COURSE OUTCOME:

Gaining deep knowledge in FACTS technology.

TEXTBOOKS:

1. N.G. Hingorani and L Gyugyi, "Understanding FACTS" IEEE Press, 2000.

2 Y.H. Song and A.T.Johns "Flexible AC Transmission Systems (FACTS)" IEEE Press, 1999.

REFERNCES:

1. T J E Miller, "Reactive Power Control in Power Systems" John Wiley, 1982.

2. R. Mohan Mathur and Rajiv K. Varma, "Thyristor based FACTS controllers for Electrical Transmission systems", Wiley Interscience, IEEE Press 2002.

	COURSE NO: 06EE 6 15 2	L – T –	P: 3 - 0 - 0
	COURSE NAME: FACTS TECHNOLOGY	CRE	DITS : 3
	CONTENT	Contact hrs	End Sem Marks %
MODULE	Departing neuron control in classical neuron transmission	11	
Ι	Reactive power control in electrical power transmission lines - uncompensated line- Fundamental theory of compensation: Power factor correction & voltage regulation Shunt Compensation and Series compensation - Approximate reactive power characteristics- Introduction to FACTS - Basic Types of FACTS controller- Brief description and definitions of FACTS controllers - Benefits from FACTS technology.	11	25%
II	Principles of static shunt compensation:Variable impedance type Static Var generators – Switching Converter type Var generators Static Var Compensator (SVC) and Static Compensator (STATCOM): Principle of operation, configuration and control – The Regulation Slope- Transient	7	25%
	Stability enhancement and Power Oscillation damping Comparison between STATCOM and SVC		
	FIRST INTERNAL EXAM		
II	Principle of operation, configuration and control – The Regulation Slope- Transient Stability enhancement and Power Oscillation damping Comparison between STATCOM and SVC	4	
III	Aims and objectives of static series compensation Variable Impedance Type series compensators: Thyristor Switched Series Capacitor (TSSC), Thyristor Controlled Series Capacitor (TCSC) - Sub synchronous characteristics Basic NGH SSR Damper Static Synchronous Series Compensator (SSSC): Principle of operation, configuration and control. Stability enhancement and power oscillation damping using series compensation	10	25%
	SECOND INTERNAL EXAM		
	Unified Power Flow Controller (UPFC): Principle of operation, Conventional Transmission control capabilities, Comparison of UPFC to Controlled Series Compensators-	10	

IV	Control structure. Interline Power Flow Controller (IPFC) -		25%		
	Basic operating Principles and Characteristics Generalized				
	and multifunctional FACTS controllers				
	END SEMESTER EXAM				

COURSE NO:	COURSE NAME	CREDITS	YEAR
06EE 6252	OPTIMAL CONTROL THEORY	3-0-0: 3	2015
	ISITES: of System Theory nowledge of Numerical methods for optimiza	tion	
COURSE OB	JECTIVES:		
To provide an	in depth knowledge in optimal Control theory	and Systems	
	oblems in Control Theory , Dynamic Program Iinimum Principle	nming , Calc	ulus of Variations ,
COURSE OU	TCOME:		
The studen	ts will be able to		
1. Formul	ation of optimal Control problems		
2. Solve the	he optimal control problem using different Nu	merical meth	ods.
	5: Kirk, Optimal Control Theory-An Introduction Jersy,1970.	on, Prentice-	Hall Inc,Englewood
-	Optimum Systems Control, Prentice –Hall Ind	c Englewood	Cliffs, New Jersey,
1968 REFERNCES	:		
1.Athans M	and P L Falb, Optimal Control-An Introd	luction to th	ne Theory and its
Applications, N	AcGraw Hill Inc, New York, 1966		

	Course Plan		
	COURSE NO:06EE 6 25 2	L - T - 1	P:3-0-
	COURSE NAME: OPTIMAL CONTROL THEORY		0 DITS : 3
MODULE	CONTENT	Contact	End Sem Marks %
	Optimality Problems in Control Theory		
	Mathematical models-selection of performance measures-		
Ι	constraints-classification of problem constraints-problem		
	formulation	10	25%
	Dynamic Programming		
II	Optimal Control Law-Principle of Optimality-application	5	
	to decision making-routing problem		25%
	FIRST INTERNAL EXAM		
Π	Hamilton Jacobi Bellman equation-Discrete and continuous Linear Regulator Problems	7	
	Calculus of Variations		
III	Basic Concepts-variation of functional – extremals- fudamental theorem in calculus of variation-Euler	10	
	Equation-Piecewise Smooth extremals-constrained		
	extremals- Hamiltonian-necessary condition for optimal		25%
	control		
	SECOND INTERNAL EXAM		
	Pontryagin's Minimum Principle		
IV	Minimum Time problem-Minimum Fuel problem- Minimum Energy problem	10	
			25%
	END SEMESTER EXAM		

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 635 2	SMART GRID TECHNOLOGY AND APPLICATIONS	3-0-0: 3	2015

PRE – REQUISITES:

- **1.** Basics of power systems, computer and communication networks
- 2. Knowledge of probability and random variables, linear algebra and complex optimization
- 3. Basic knowledge in renewable energy resources

COURSE OBJECTIVES:

- 1. After successfully completing this course, the student will have gained an understanding of various aspects of the smart grid, including technologies, components, architectures and applications.
- 2. To understand various Smart grid control elements required to monitor and control the grid, such as smart meters, sensors and phasor measurement units.

SYLLABUS

Evolution of Electric Grid; Concept, Need, functions, Opportunities & Barriers of Smart Grid; Resilient & Self-Healing Grid;Smart Meters; Automatic Meter Reading(AMR);Outage Management System(OMS); Plug in Hybrid Electric Vehicles(PHEV);Home & Building Automation; Smart Substations;Geographic Information System (GIS);Intelligent Electronic Devices(IED);Smart storage; Wide Area Measurement System(WAMS); Phase Measurement Unit(PMU); Micro grid, need & applications; Issues of interconnection; protection & control of micro grid; Plastic, Organic and Thin film solar cells; Variable speed wind generators; micro turbines; Captive power plants; Integration of renewable energy sources

COURSE OUTCOME:

The students will be able to

- 1. Describe the smart grid technologies, components, architectures and applications.
- 2. Categorise various Smart grid control elements required to monitor and control the grid
- 3. Explain the smart grid applications within the industry, and design criteria's
- 4. Learn the need , issues and applications of micro grids and distributed energy sources

TEXTBOOKS:

- 1. Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable Energy in Electric Power Systems", Wiley
- Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press.

REFERNCES:

1. JanakaEkanayake, KithsiriLiyanage, Jianzhong.Wu, AkihikoYokoyama, Nick Jenkins, "Smart

Grid: Technology and Applications"- Wiley

- 2. Jean Claude Sabonnadière, NouredineHadjsaïd, "Smart Grids", Wiley Blackwell
- 3. Peter S. Fox-Penner, "Smart Power: Climate Change, the Smart Grid, and the Future of Electric Utilities"
- 4. James Momoh, "Smart Grid: Fundamentals of Design and Analysis"-Wiley, IEEE Press, 2012.

MODULE COURSE NAME: SMART GRID TECHNOLOGY AND APPLICATIONS CREDITS : 3 COURSE NAME: SMART GRID TECHNOLOGY AND APPLICATIONS Contact Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Definitions, Need of Smart Grid, Punctions of Smart Grid, Definitions, Need of Smart Grid, Punctions of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Definitions, Need of Smart Grid, Concept of Resilient & Self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid. 11 25% III Part 1:Introduction to Smart Meters, Real Time Pricing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS) 6 25% III Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers. 5 5 IIII Automation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU). 10 25% SteCOND INTERNAL EXAM Vector of micro grid, Issues of interconnection, protection & control of mi		COURSE NO: 06 EE 635 2	L – T –	P: 3 - 0 - 0
It is a construction of constr			CREDITS : 3	
IEvolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient & Self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid.1125%IIPart 1:Introduction to Smart Meters, Real Time Pricing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS)625%IIIPlug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.525%IIIPart 2: Smart Substations, Substation Automation, Feeder Automation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU).25%IIVConcept of micro grid, Inseed & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind10	MODULE			
IOpportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient & Self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid.1125%IIPart 1:Introduction to Smart Meters, Real Time Pricing, Outage Management System(OMS)625%IIIPing in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.525%IIIPart 2: Smart Substations, Substation Automation, Feeder Mutomation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU).1025%IIVSecond INTERNAL EXAM Protection & control of micro grid, Issues of interconnection, protection & control of micro grid, Issues of interconnection, protection & control of micro grid, Plastic & Organic solar cells, Thin film solar cells, Variable speed wind1025%		Evolution of Electric Grid, Concept of Smart Grid,		
Ibetween conventional & smart grid, Concept of Resilient & Self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid.1125%IIPart 1:Introduction to Smart Meters, Real Time Pricing, Outage Management System(OMS)625%IIISmart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS)625%IIIPlug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.510IIIPart 2: Smart Substations, Substation Automation, Feeder Mutomation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU).25%IIVConcept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar10IVConcept of micro grid, Issues of interconnection, cells, Thin film solar cells, Variable speed wind10		Definitions, Need of Smart Grid, Functions of Smart Grid,		
I& Self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid.IIIPart 1:Introduction to Smart Meters, Real Time Pricing, Outage Management System(OMS)6IIISmart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS)6IIISmart Sensors, Home & Building Automation, Phase Shifting Transformers.5IIIPart 2: Smart Substations, Substation Automation, Feeder Mutomation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU).25%IIVConcept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar10IVConcept of micro grid, need & applications solar cells, Thin film solar cells, Variable speed wind10		Opportunities & Barriers of Smart Grid, Difference		
Image: A Self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid. Image: A self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid. Image: A self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid. Image: A self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid. Image: A self-Healing Grid, Present development & International policies in Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS) 6 Image:	т	between conventional & smart grid, Concept of Resilient	11	25%
Image: Part 1:Introduction to Smart Meters, Real Time Pricing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS)6IIISmart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS)6FIRST INTERNAL EXAMIIIPlug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.5IIIPart 2: Smart Substations, Substation Automation, Feeder Automation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU).25%ECOND INTERNAL EXAMIVConcept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind10		& Self-Healing Grid, Present development & International		
IISmart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS)6Outage Management System(OMS)5FIRST INTERNAL EXAMPlug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.5IIISmart Sensors, Home & Building Automation, Phase Shifting Transformers.5Part 2: Smart Substations, Substation Automation, Feeder Automation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU).25%IVConcept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind10		policies in Smart Grid. Case study of Smart Grid.		
II Outage Management System(OMS) 25% Outage Management System(OMS) 25% II Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers. 5 III Part 2: Smart Substations, Substation Automation, Feeder Automation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU). 25% IV Concept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind 10		Part 1:Introduction to Smart Meters, Real Time Pricing,		
Outage Management System(OMS) 25% II Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers. 5 III Part 2: Smart Substations, Substation Automation, Feeder 10 Automation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU). 25% IV Concept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind 10	П	Smart Appliances, Automatic Meter Reading(AMR),	6	
FIRST INTERNAL EXAM III Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers. 5 III Part 2: Smart Substations, Substation Automation, Feeder Automation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU). 25% IV IV Concept of micro grid, need & applications of micro grid, formation of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind 10		Outage Management System(OMS)		25%
IISmart Sensors, Home & Building Automation, Phase Shifting Transformers.5IIIPart 2: Smart Substations, Substation Automation, Feeder Automation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU).25%IIINECOND INTERNAL EXAM10101025%				
IIShifting Transformers.JPart 2: Smart Substations, Substation Automation, Feeder10Automation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU).25%IVConcept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind10				
IIIPart 2: Smart Substations, Substation Automation, Feeder10Automation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU).25%IVConcept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind10	II		5	
IIIAutomation. Geographic Information System (GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU).25%Image: Storage of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind10				
III Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU). 25% Vide Area Measurement System(WAMS), Phase Measurement Unit(PMU). SECOND INTERNAL EXAM Concept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind 10 25%			10	
Image: Notice of the state	III			
SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU). 25% Exercise Second Internal Exam Structure Second Internal Exam IN Concept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind 10				
Wide Area Measurement System(WAMS), Phase Measurement Unit(PMU). 25% SECOND INTERNAL EXAM 25% IV Concept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind 10				
Measurement Unit(PMU). SECOND INTERNAL EXAM Concept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind 10 10				25%
SECOND INTERNAL EXAM Concept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind 10 25%				
IVConcept of micro grid, need & applications of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind1025%				
IVgrid, formation of micro grid, Issues of interconnection, protection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind1025%				
IVprotection & control of micro grid. Plastic & Organic solar cells, Thin film solar cells, Variable speed wind1025%				
cells, Thin film solar cells, Variable speed wind 25%	IV		10	
				25%
generators, ruer cens, miero turbines, captive power				4 3 70
plants, Integration of renewable energy sources				
END SEMESTER EXAM				

06 EE 6 45 2 ELECTRIC VEHICLE TECHNOLOGY 3-0-0: 3 2015 PRE - REQUISITES: Fundamentals of power electronics COURSE OBJECTIVES: To provide in depth knowledge about working and analysis of electric vehicle technology SYLLABUS: Basics of vehicles mechanisms, Drive-train Topologies, DC and AC Machines for Propulsion Applications, Energy Sources for EV/HEV, Modelling and analysis of EV/HEV COURSE OUTCOME: The students will be able to analyze and model electric vehicles and hybrid electric vehicles Text Books & References: 1. I. Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003. 2. M. Ehsani, Y. Gao, S.E. Gay and Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press. 2005. Fuel 3. J. Larminie and J. Lowry, Electric Vehicle Technology Explained, Wiley, 2003. 4. Chris. Mi, M. AbulMasrurand D. W. Gao, Hybrid Electrical Vehicles: Principles and Application with Practical Perspectives, Wiley, 2011. 5. B.D. McNicol and D.A.J. Rand, Power Sources for Electric Vehicles, Elsevier Publications. 1998.	COURSE NO:	COURSE NAME	CREDITS	YEAR
 Fundamentals of power electronics COURSE OBJECTIVES: To provide in depth knowledge about working and analysis of electric vehicle technology SYLLABUS: Basics of vehicles mechanisms, Drive-train Topologies, DC and AC Machines for Propulsion Applications, Energy Sources for EV/HEV, Modelling and analysis of EV/HEV COURSE OUTCOME: The students will be able to analyze and model electric vehicles and hybrid electric vehicles Text Books & References: 1. I. Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003. 2. M. Ehsani, Y. Gao, S.E. Gay and Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press. 2005. 3. J. Larminie and J. Lowry, Electric Vehicle Technology Explained, Wiley, 2003. 4. Chris. Mi, M. AbulMasrurand D. W. Gao, Hybrid Electrical Vehicles: Principles and Application with Practical Perspectives, Wiley, 2011. 5. B.D. McNicol and D.A.J. Rand, Power Sources for Electric Vehicles, Elsevier 			3-0-0: 3	2015
 COURSE OBJECTIVES: To provide in depth knowledge about working and analysis of electric vehicle technology SYLLABUS: Basics of vehicles mechanisms, Drive-train Topologies, DC and AC Machines for Propulsion Applications, Energy Sources for EV/HEV, Modelling and analysis of EV/HEV COURSE OUTCOME: The students will be able to analyze and model electric vehicles and hybrid electric vehicles Text Books & References: 1. I. Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003. 2. M. Ehsani, Y. Gao, S.E. Gay and Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press. 2005. 3. J. Larminie and J. Lowry, Electric Vehicle Technology Explained, Wiley, 2003. 4. Chris. Mi, M. AbulMasrurand D. W. Gao, Hybrid Electrical Vehicles: Principles and Application with Practical Perspectives, Wiley, 2011. 5. B.D. McNicol and D.A.J. Rand, Power Sources for Electric Vehicles, Elsevier 	PRE – REQUI	SITES:		
 To provide in depth knowledge about working and analysis of electric vehicle technology SYLLABUS: Basics of vehicles mechanisms, Drive-train Topologies, DC and AC Machines for Propulsion Applications, Energy Sources for EV/HEV, Modelling and analysis of EV/HEV COURSE OUTCOME: The students will be able to analyze and model electric vehicles and hybrid electric vehicles Text Books & References: 1. I. Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003. 2. M. Ehsani, Y. Gao, S.E. Gay and Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press. 2005. 3. J. Larminie and J. Lowry, Electric Vehicle Technology Explained, Wiley, 2003. 4. Chris. Mi, M. AbulMasrurand D. W. Gao, Hybrid Electrical Vehicles: Principles and Application with Practical Perspectives, Wiley, 2011. 5. B.D. McNicol and D.A.J. Rand, Power Sources for Electric Vehicles, Elsevier 	Fundamentals of	of power electronics		
 SYLLABUS: Basics of vehicles mechanisms, Drive-train Topologies, DC and AC Machines for Propulsion Applications, Energy Sources for EV/HEV, Modelling and analysis of EV/HEV COURSE OUTCOME: The students will be able to analyze and model electric vehicles and hybrid electric vehicles Text Books & References: 1. I. Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003. 2. M. Ehsani, Y. Gao, S.E. Gay and Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press. 2005. 3. J. Larminie and J. Lowry, Electric Vehicle Technology Explained, Wiley, 2003. 4. Chris. Mi, M. AbulMasrurand D. W. Gao, Hybrid Electrical Vehicles: Principles and Application with Practical Perspectives, Wiley, 2011. 5. B.D. McNicol and D.A.J. Rand, Power Sources for Electric Vehicles, Elsevier 	COURSE OBJ	ECTIVES:		
 Basics of vehicles mechanisms, Drive-train Topologies, DC and AC Machines for Propulsion Applications, Energy Sources for EV/HEV, Modelling and analysis of EV/HEV COURSE OUTCOME: The students will be able to analyze and model electric vehicles and hybrid electric vehicles Text Books & References: 1. I. Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003. 2. M. Ehsani, Y. Gao, S.E. Gay and Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press. 2005. 3. J. Larminie and J. Lowry, Electric Vehicle Technology Explained, Wiley, 2003. 4. Chris. Mi, M. AbulMasrurand D. W. Gao, Hybrid Electrical Vehicles: Principles and Application with Practical Perspectives, Wiley, 2011. 5. B.D. McNicol and D.A.J. Rand, Power Sources for Electric Vehicles, Elsevier 	To provide in de	epth knowledge about working and analysis of ele	ectric vehicle t	echnology
 The students will be able to analyze and model electric vehicles and hybrid electric vehicles Text Books & References: 1. I. Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003. 2. M. Ehsani, Y. Gao, S.E. Gay and Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press. 2005. 3. J. Larminie and J. Lowry, Electric Vehicle Technology Explained, Wiley, 2003. 4. Chris. Mi, M. AbulMasrurand D. W. Gao, Hybrid Electrical Vehicles: Principles and Application with Practical Perspectives, Wiley, 2011. 5. B.D. McNicol and D.A.J. Rand, Power Sources for Electric Vehicles, Elsevier 	Basics of vehic			
 Text Books & References: 1. I. Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003. 2. M. Ehsani, Y. Gao, S.E. Gay and Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press. 2005. 3. J. Larminie and J. Lowry, Electric Vehicle Technology Explained, Wiley, 2003. 4. Chris. Mi, M. AbulMasrurand D. W. Gao, Hybrid Electrical Vehicles: Principles and Application with Practical Perspectives, Wiley, 2011. 5. B.D. McNicol and D.A.J. Rand, Power Sources for Electric Vehicles, Elsevier 	COURSE OUT	COME:		
 M. Ehsani, Y. Gao, S.E. Gay and Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press. 2005. J. Larminie and J. Lowry, Electric Vehicle Technology Explained, Wiley, 2003. Chris. Mi, M. AbulMasrurand D. W. Gao, Hybrid Electrical Vehicles: Principles and Application with Practical Perspectives, Wiley, 2011. B.D. McNicol and D.A.J. Rand, Power Sources for Electric Vehicles, Elsevier 			cles and hybri	d electric vehicles
 Cell Vehicles: Fundamentals, Theory and Design, CRC Press. 2005. 3. J. Larminie and J. Lowry, Electric Vehicle Technology Explained, Wiley, 2003. 4. Chris. Mi, M. AbulMasrurand D. W. Gao, Hybrid Electrical Vehicles: Principles and Application with Practical Perspectives, Wiley, 2011. 5. B.D. McNicol and D.A.J. Rand, Power Sources for Electric Vehicles, Elsevier 	1. I. Hussein, I	Electric and Hybrid Vehicles: Design Fundame	entals, CRC I	Press, 2003.
 4. Chris. Mi, M. AbulMasrurand D. W. Gao, Hybrid Electrical Vehicles: Principles and Application with Practical Perspectives, Wiley, 2011. 5. B.D. McNicol and D.A.J. Rand, Power Sources for Electric Vehicles, Elsevier 			•	Electric and Fuel
Application with Practical Perspectives, Wiley, 2011.5. B.D. McNicol and D.A.J. Rand, Power Sources for Electric Vehicles, Elsevier	3. J. Larminie	and J. Lowry, Electric Vehicle Technology Ex	plained, Wile	ey, 2003.
		•	ectrical Vehi	cles: Principles and
			for Electric	Vehicles, Elsevier

COURSE NO:06 EE 6 45 2COURSE NAME:ELECTRIC VEHICLETECHNOLOGYMODULEMODULEBasics of vehicles mechanisms, Need and importance of Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV), Power/Energy supplies requirements for EV/HEV applications, vehicle power source characterization, and transmission characteristics. Drive-train Topologies: Basics of electric and hybrid traction, Electric and hybrid drive-train topologies, power flow control in drive-train topologies, fuel efficiency		P:3-0-0 DITS:3 End Sem Marks %
MODULETECHNOLOGYMODULECONTENTBasics of vehicles mechanisms, Need and importance of Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV), Power/Energy supplies requirements for EV/HEV applications, vehicle power source characterization, and transmission characteristics. Drive-train Topologies: Basics of electric and hybrid traction, Electric and hybrid drive-train topologies, power flow control in drive-train topologies, fuel efficiency	Contact hrs	End Sem Marks %
MODULECONTENTBasics of vehicles mechanisms, Need and importance of Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV), Power/Energy supplies requirements for EV/HEV applications, vehicle power source characterization, and transmission characteristics.IDrive-train Topologies: Basics of electric and hybrid traction, Electric and hybrid drive-train topologies, power flow control in drive-train topologies, fuel efficiency	hrs	Marks %
MODULEBasics of vehicles mechanisms, Need and importance of Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV), Power/Energy supplies requirements for EV/HEV applications, vehicle power source characterization, and transmission characteristics.IDrive-train Topologies: Basics of electric and hybrid traction, Electric and hybrid drive-train topologies, power flow control in drive-train topologies, fuel efficiency	hrs	Marks %
Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV), Power/Energy supplies requirements for EV/HEV applications, vehicle power source characterization, and transmission characteristics.IDrive-train Topologies: Basics of electric and hybrid traction, Electric and hybrid drive-train topologies, power flow control in drive-train topologies, fuel efficiency	11	25%
analysis.		
DC and AC Machines for Propulsion Applications: Electric system components for EV/HEV, suitability of DC and AC machines for EV/HEV applications, AC and DC Motor drives.	6	25%
FIRST INTERNAL EXAM		25%
Advanced permanent magnet and switch reluctanceIImachines configuration and control of drives.	4	
III Energy Sources for EV/HEV: Requirements of energy supplies and storage in EV/HEV, Review of batteries, fuel cells, flywheels and ultra-capacitors as energy sources for EV/HEV, characteristics and comparison of energy sources for EV/HEV, hybridization of different energy sources.	10	250/
SECOND INTERNAL EXAM		25%
IV SECOND INTERNAL EXAM Modelling and analysis of EV/HEV drive train, sizing of motor, and design of traction power electronics, various vehicle subsystems. EV/HEV energy management strategies, classification and comparison of various energy management strategies, energy efficiency comparison for	11	250/
various EV and HEV variants. END SEMESTER EXAM		25%

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 6 07 1	MINI PROJECT	0-0-4: 2	2015

PRE – REQUISITES: Nil

COURSE OBJECTIVES:

To learn the simulation and/or hardware implementation of a topic based on a research publication in the relevant area of specialization.

SYLLABUS:

The student has to select a topic and do simulation and/or hardware in consultation with any of the faculty members in the department (or the faculty member offering courses for the programme).

A detailed report on the mini project is to be prepared in the prescribed format given by the Department. A committee with the Head of the Department as the chairman and two faculty members from the department as members shall evaluate the mini project based on coverage of the topic, simulation and/or hardware implementation, presentation and ability to answer the questions put forward by the committee.

COURSE OUTCOME:

Students will

- (1) be aware of recent developments in the area of work
- (2) improve their simulation and hardware implementation skills

References:

(1) Simulation tools – MATLAB/Simulink , PSIM, PSpiceetc

(2) IEEE Xplore, Elsevier- Science Direct, Springer Journalsetc

N	RSE O:	COURSE NAME	CREDITS	YEAR
06 EE		ELECTRIC DRIVES LAB	0-0-3:1	2015
PRE –	REQUI	SITES:		
		vledge of Power Electronics circuits. vledge of basic AC & DC Drives		
COUR	SE OBJ	ECTIVES:		
To prov	vide an ir	 depth knowledge regarding (1) The working and performance of variou (2) Software modelling of different drives. 	us drives.	
SYLLA	ABUS			
Simula	tion and	l analysis of different drives using MAT	LAB/Simulink and	PSIM.
The wo	orking a	nd analysis of AC and DC drives.		
COUR	SE OUT	COME:		
The	students	s will be able to		
	 Con Mod 	ntrol AC drive from the system. ntrol DC drive from the system. del various drives and analyze its performan hip themselves to simulate and model variou		ed on a literature.
TEXTI	BOOKS	:		
1.	R. Kris	hnan, Electrical Motor Drives, PHI-2003	3.	
2.	Ned Me	ohan, Undeland, Robbins, Power Electro	onics-3 rd edn, John V	Viley, 2003
3.	Daniel	W. Hart, Introduction to Power Electron	nics, Prentice Hall, 1	997
REFEI	RNCES:			
1.	G.K.Dı	ubey, Fundamentals of Electrical Drives,	, Narosa- 1995.	
2.	Bimal I	K Bose, Modern Power Electronics & A	C Drives, Pearson I	Education
	W:11:	n Shepherd, Li Zhang., Power Converter	Circuits Marcell	Dekker 2004

Course Plan COURSE NO:06 EE 6 07 2	L – T -	- P : 0-0-3
COURSE NAME:ELECTRIC DRIVES LAB	CRE	DITS : 1
LIST OF EXPERIMENTS	Contact hrs	End Sem Marks %
1. Simulation of a Voltage Source Inverter fed three phase Induction Motor.		
2. Simulation of a Switched Reluctance Motor Drive.		
3. Simulation of a Brushless DC Motor Drive.		
4. Simulation of closed loop control of DC-DC converters.		
5. FFT Analysis of a single phase full bridge inverter fed load using PSIM or MATLAB/ Simulink		
 FFT Analysis of a three phase full bridge inverter fed load, using PSIM or MATLAB/ Simulink. 		
7. Closed loop speed control of DCmotors.	30	100 %
8. Closed loop speed control of three phase AC motors.		100 /0
9. Position and speed control of a Permanent Magnet Synchronous motor.		
10. Vector control of a three phase Induction motor.		
11. Sensor less speed control of three phase motors.		
12. Use of Microcontrollers, DSP and FPGA for the control of motors.		
At least 10 experiments in the list are to be conducted in the laboratory. Additional experiments and simulation assignments can also be given by	the depart	ment.
END SEMESTER – EXAM		

Semester III

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 7 11 1	POWER ELECTRONIC CONTROL OF	3-0-0: 3	2015
	SPECIAL ELECTRICAL MACHINES		
	SITES: of Power Electronic control circuits dge of construction & working of Machines		
COURSE OBJ	ECTIVES:		
To provide a fun for various appl SYLLABUS	ndamental understanding of the special types of el ications.	ectric machine	s and their controls
11 0	ors, Construction and principle of operatic ctance Motors & Synchronous Reluctance Motors		

Switched Reluctance Motors & Synchronous Reluctance Motors: Constructional, principle of operation, Characteristics and control- Permanent Magnet Brushless DC Motors : Mechanism of Commutation, different sensors, torque and emf equation, Torques speed characteristics, controllers and control schemes- Permanent Magnet Synchronous Motors: Principle of operation, emf, power input and torque expressions, Phasor diagram, controllers, characteristics, and control schemes.

COURSE OUTCOME:

The students will be able to

- 1. Model the control circuit for Special Electric Machines.
- 2. Perform the sensor and sensor less control of Special Electric Machines using different digital controllers.

TEXTBOOKS & REFERNCES:

- 1. Kenjo T, Sugawara A, Stepping Motors and Their Microprocessor Control, Clarendon Press,Oxford, 1994.
- 2. V.V.Athani, Stepper Motor Fundamentals, Application and Design, New Age International(P) Ltd, Publishers, New Delhi, 1997.
- 3. Miller T J E, Switched Reluctance Motor and Their Control, Clarendon Press, Oxford,1993.
- 4. Miller T J E, Brushless Permanent Magnet and Reluctance Motor Drives, Clarendon Press,Oxford,1989.
- R.Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, CRC Press, New York, 2001.

CONTENThrs5 MImage: Stepping Motors: Constructional features, principle of operation, modes of excitation, single phase stepping motors, torque production in variable Reluctance (VR) stepping motor, Dynamic characteristics, Drive Systems and circuit for open loop control, Closed loop control of stepping motor, microprocessor based controller102Image: Switched Reluctance Motors&Synchronous Reluctance Motors: Switched Reluctance Motors-Constructional features, principle of operation. Torque equation, Power controllers, Characteristics and control. Microprocessor based controller. Sensor less control.52Image: Switched Reluctance Motors&Synchronous Reluctance Motors: Synchronous Reluctance Motors-Constructional features: axial and radial air gap Motors. Operating principle, reluctance torque-Phasor diagram, motor characteristics.510Image: Sensor Reluctance Motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave premenent memory backles motor drives. Torsue and and premenent memory backles motor for the premenent of the present memory for the premenent drives.11		Course Plan		
MODULE OF SPECIAL ELECTRICAL MACHINES CONTENT Contact hrs I S I Stepping Motors: Constructional features, principle of operation, modes of excitation, single phase stepping motors, torque production in variable Reluctance (VR) stepping motor, Dynamic characteristics, Drive Systems and circuit for open loop control, Closed loop control of stepping motor, microprocessor based controller 10 2 III Switched Reluctance Motors&Synchronous Reluctance features, principle of operation. Torque equation, Power controllers, Characteristics and control. Microprocessor based controller. Sensor less control. 5 2 III Switched Reluctance Motors&Synchronous Reluctance features: axial and radial air gap Motors. Operating principle, reluctance torque-Phasor diagram, motor characteristics. 5 11 IIII Permanent Magnet Brushless DC Motors: Introduction- mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf 11		COURSE NO:06 EE 7 11 1	L – T – P	: 3 – 0–0
CONTENThrs\$ \$ MIStepping Motors: Constructional features, principle of operation, modes of excitation, single phase stepping motors, torque production in variable Reluctance (VR) stepping motor, Dynamic characteristics, Drive Systems and circuit for open loop control, Closed loop control of stepping motor, microprocessor based controller102IISwitched Reluctance Motors&Synchronous Reluctance Motors: Switched Reluctance Motors-Constructional features, principle of operation. Torque equation, Power controllers, Characteristics and control. Microprocessor based controller. Sensor less control.52IIISwitched Reluctance Motors&Synchronous Reluctance Motors: Synchronous Reluctance features: axial and radial air gap Motors. Operating principle, reluctance torque-Phasor diagram, motor characteristics.511IIIPermanent Magnet Brushless DC Motors: Introduction- Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf112	DULE		CREDI	TS:3
Ioperation, modes of excitation, single phase stepping motors, torque production in variable Reluctance (VR) stepping motor, Dynamic characteristics, Drive Systems and circuit for open loop control, Closed loop control of stepping motor, microprocessor based controller102IISwitched Reluctance Motors&Synchronous Reluctance Motors: Switched Reluctance Motors-Constructional features, principle of operation. Torque equation, Power controllers, Characteristics and control. Microprocessor based controller. Sensor less control.5IIISwitched Reluctance Motors&Synchronous Reluctance Motors: Synchronous Reluctance Motors. Operating principle, reluctance torque-Phasor diagram, motor characteristics.102IIIPermanent Magnet Brushless DC Motors: Introduction- Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf2		CONTENT		End Sem Marks %
Imotors, torque production in variable Reluctance (VR) stepping motor, Dynamic characteristics, Drive Systems and circuit for open loop control, Closed loop control of stepping motor, microprocessor based controller102IISwitched Reluctance Motors&Synchronous Reluctance Motors: Switched Reluctance Motors-Constructional features, principle of operation. Torque equation, Power controllers, Characteristics and control. Microprocessor based controller. Sensor less control.52IIISwitched Reluctance Motors&Synchronous Reluctance Motors: Synchronous Reluctance Motors. Operating principle, reluctance Motors. Operating 		Stepping Motors: Constructional features, principle of		
Istepping motor, Dynamic characteristics, Drive Systems and circuit for open loop control, Closed loop control of stepping motor, microprocessor based controller102IISwitched Reluctance Motors&Synchronous Reluctance Motors: Switched Reluctance Motors-Constructional features, principle of operation. Torque equation, Power controllers, Characteristics and control. Microprocessor based controller. Sensor less control.52IIISwitched Reluctance Motors&Synchronous Reluctance Motors: Synchronous Reluctance Motors-Constructional features: axial and radial air gap Motors. Operating principle, reluctance torque-Phasor diagram, motor characteristics.5102IIIPermanent Magnet Brushless DC Motors: Introduction- Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf1022		operation, modes of excitation, single phase stepping		
I and circuit for open loop control, Closed loop control of stepping motor, microprocessor based controller II Switched Reluctance Motors&Synchronous Reluctance Motors: Switched Reluctance Motors&Synchronous Reluctance features, principle of operation. Torque equation, Power controllers, Characteristics and control. Microprocessor based controller. Switched Reluctance Motors&Synchronous Reluctance Motors: Switched Reluctance torque-Phasor Constructional features: axial and radial air gap Motors. Operating principle, reluctance torque-Phasor diagram, motor characteristics. 5 III Permanent Magnet Brushless DC Motors: Introduction- Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf 11		motors, torque production in variable Reluctance (VR)		
and circuit for open loop control, Closed loop control of stepping motor, microprocessor based controller istepping motor, microprocessor based controller II Switched Reluctance Motors&Synchronous Reluctance 5 Motors: Switched Reluctance Motors-Constructional features, principle of operation. Torque equation, Power controllers, Characteristics and control. Microprocessor based controller. Sensor less control. 5 II Switched Reluctance Motors&Synchronous Reluctance Motors: Synchronous Reluctance Motors. Constructional features: axial and radial air gap Motors. Operating principle, reluctance torque–Phasor diagram, motor characteristics. 5 III Permanent Magnet Brushless DC Motors: Introduction-Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf 11	т	stepping motor, Dynamic characteristics, Drive Systems	10	25%
IIISwitched Reluctance Motors&Synchronous Reluctance Motors: Switched Reluctance Motors-Constructional features, principle of operation. Torque equation, Power controllers, Characteristics and control. Microprocessor based controller. Sensor less control.5IIISwitched Reluctance Motors&Synchronous Reluctance Motors:Synchronous Reluctance Motors-Constructional features: axial and radial air gap Motors. Operating principle, reluctance torque–Phasor diagram, motor characteristics.5IIIPermanent Magnet Brushless DC Motors: Introduction- Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf112	L	and circuit for open loop control, Closed loop control of		
IIMotors: Switched Reluctance Motors-Constructional features, principle of operation. Torque equation, Power controllers, Characteristics and control. Microprocessor based controller. Sensor less control.5IIFIRST INTERNAL EXAM Motors: Synchronous Reluctance Motors-Constructional features: axial and radial air gap Motors. Operating principle, reluctance torque-Phasor diagram, motor characteristics.5IIIPermanent Magnet Brushless DC Motors: Introduction- Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor drives, Torque and emf112		stepping motor, microprocessor based controller		
II features, principle of operation. Torque equation, Power controllers, Characteristics and control. Microprocessor based controller. Sensor less control. 2 II FIRST INTERNAL EXAM 5 II Switched Reluctance Motors&Synchronous Reluctance Motors.Constructional features: axial and radial air gap Motors. Operating principle, reluctance torque–Phasor diagram, motor characteristics. 5 III Permanent Magnet Brushless DC Motors: Introduction-Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf 11 2 2		Switched Reluctance Motors&Synchronous Reluctance		
features, principle of operation. Torque equation, Power controllers, Characteristics and control. Microprocessor based controller. Sensor less control.2IIFIRST INTERNAL EXAM5Motors:Synchronous Reluctance Motors&Synchronous Reluctance features: axial and radial air gap Motors. Operating principle, reluctance torque–Phasor diagram, motor characteristics.5IIIPermanent Magnet Brushless DC Motors: Introduction- Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf112	TT	Motors: Switched Reluctance Motors-Constructional	5	
controllers, Characteristics and control. Microprocessor based controller. Sensor less control. Image: controller. Sensor less control. II Switched Reluctance Motors&Synchronous Reluctance 5 Motors:Synchronous Reluctance Motors-Constructional features: axial and radial air gap Motors. Operating principle, reluctance torque–Phasor diagram, motor characteristics. 5 III Permanent Magnet Brushless DC Motors: Introduction-Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf 11 2 2	**	features, principle of operation. Torque equation, Power		25%
FIRST INTERNAL EXAM Switched Reluctance Motors&Synchronous Reluctance Motors:Synchronous Reluctance Motors-Constructional 5 features: axial and radial air gap Motors. Operating 5 principle, reluctance torque–Phasor diagram, motor 5 Characteristics. Permanent Magnet Brushless DC Motors: Introduction- Commutation in DC motors, Difference between 11 mechanical and electronic commutators, Hall sensors, 11 Optical sensors, Multiphase Brushless motor, Square wave 11 permanent magnet brushless motor drives, Torque and emf 2		controllers, Characteristics and control. Microprocessor		2370
IISwitched Reluctance Motors&Synchronous Reluctance Motors:Synchronous Reluctance Motors-Constructional features: axial and radial air gap Motors. Operating principle, reluctance torque–Phasor diagram, motor characteristics.5IIIPermanent Magnet Brushless DC Motors: Introduction- Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf112		based controller. Sensor less control.		
IIMotors:Synchronous Reluctance Motors-Constructional features: axial and radial air gap Motors. Operating principle, reluctance torque–Phasor diagram, motor characteristics.5IIIPermanent Magnet Brushless DC Motors: Introduction- Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf112				
II Features: axial and radial air gap Motors. Operating principle, reluctance torque–Phasor diagram, motor characteristics. III Permanent Magnet Brushless DC Motors: Introduction-Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf 11 2		·		
principle, reluctance torque–Phasor diagram, motor characteristics. III Permanent Magnet Brushless DC Motors: Introduction- Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf 2	II	·	5	
Image:				
IIIPermanent Magnet Brushless DC Motors: Introduction- Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf112		· · · ·		
IIICommutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf112				
III mechanical and electronic commutators, Hall sensors, II Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf 2		-		
Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf 2	III	, ,	11	
permanent magnet brushless motor drives, Torque and emf				
equation, forques speed characteristics, Controllers-				25%
Micronroposon based controllor Concorless control				
Microprocessor based controller. Sensorless control. SECOND INTERNAL EXAM		-		

	Permanent Magnet Synchronous Motors: Principle of			
	operation, EMF, power input and torque expressions, Phasor diagram, Power controllers, Torque speed	11		
IV	characteristics, Self control, Vector control, Current control schemes, sensorless control.		25%	
	END SEMESTER EXAM			

COURSE NO:	COURSE NAME	CREDIT S	YEAR		
06 EE 721 1	POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS	3-0-0: 3	2015		
PRE – REQU	ISITES:				
1. Basics of	of renewable energy system				
2. Knowle	edge of power electronics				
COURSE OB.	JECTIVES:				
1. To study	y the various renewable energy options.				
2. To cond	uct qualitative study of power converters				
SYLLABUS					
Introduction t	o Renewable energy system; Qualitative	e study of a	lifferent renewable		
energy resourc	es; Electrical machines for Renewable	Energy conv	version; Review of		
reference theor	ry; Power converters for solar and wind e	energy system	n; Case studies of		
Wind- PV syste	em; Maximum Power Point Tracking(MPP	P T).			
COURSE OU	ТСОМЕ:				
Upon successf	ul completion of this course, students will	be able to:			
1. Understand technology behind green energy harnessing					
2. Understand	power electronic application to renewable				
3. Undertake p	rojects based on grid interconnected green	power syster	n.		
TEXTBOOKS	5:				
1. Rashid .M. H	H, Power Electronics Handbook, Academic	e press, 2nd e	dn., 2001.		
2. Rai. G.D, No	on-conventional Energy Sources, Khanna p	oublishers, 19	993.		
3. P.S Bimbra,	Generalised theory of Electrical machines				
REFERENCE	S:				
1. Rai. G.D, Solar Energy Utilization, Khanna Publishers, 1993.					
2. Gary, L. Joh	nson, Wind Energy System, Prentice Hall	Inc, 1995.			
3. B.H. Khan	, Non-conventional Energy Resources,	Tata McGr	aw-Hill Publishing		

	COURSE PLAN		
	COURSE NO:06 EE 721 1	L – T –	P :3-0-0
COURSE NAME: POWER ELECTRON FOR RENEWABL MODULE ENERGY SYSTEMS		CREI	DITS:3
	CONTENT	Contact hrs	End Sem Marks %
Ι	Introduction: Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.	11	25%
II	Electrical machines for Renewable Energy conversion: Review of reference theory.	5	
	FIRST INTERNAL EXAM		25%
II	Fundamentals principle of operation and analysis: IG, PMSG, SCIG and DFIG.	6	20 / 0
III	Power converters - Solar: Block diagram of solar photo voltaic system: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection of inverter, battery sizing and array sizing. Wind: three phase AC voltage controllers- AC-DC- AC converters: PWM Inverters, Grid Interactive Inverters - matrix converters.	10	25%
	SECOND INTERNAL EXAM		
IV	Hybrid Renewable Energy systems - Need for Hybrid Systems- Wind and PV systems -Stand alone operation of fixed and variable speed wind energy conversion systems and solar system-Grid connection Issues -Grid integrated PMSG and SCIG Based WECS-Grid Integrated solar system. Case studies of Wind-PV- Maximum Power Point Tracking (MPPT).	10	25%
	END SEMESTER EXAM		

COURSE NO:	COURSE NAME	CREDITS	YEAR		
06 EE 7 31 1	EMBEDDED CONTROLLERS	3-0-0: 3	2015		
	SITES: 8bit Microcontrollers ge of working of AC & DC drives				
COURSE OBJI	ECTIVES:				
electronic device SYLLABUS: Use of a typical electrical quanti 16F877Microcor	8 bit (Intel 8051) Microcontroller for a ties - Architecture and use of peripheral ntroller(8bit) - Use of microcontrollers adamentals of DSP controller(TMS LF24	measuring and s of PIC for control of	control of Power		
COURSE OUT	COME:				
The students will	l be able to				
 Design digital metering circuits for electrical measurements Design embedded controllers for converters, inverters choppers 					
TEXTBOOKS:					
 Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. McKinlay, Th 8051Microcontroller and Embedded Systems- Using Assembly and C, Prentic Hall of India, New Delhi, 2007 John B. Peatman, Design with PIC Microcontrollers, Pearson, 2003. DSP based electro mechanical motion control- Hamid A Toliyat and Steven O Campbell, CRC press 					
REFERENCES:					
the Microchip Pl 2. SubrataGhosh Microcontroller	rnett, Larry O'Cull, Sarah Alison Cox, E C, Volume 1, Thomson Delmar Leaning al, "Embedded Systems & Robots: Proje , Cengage Learning, 1 st Edition, 2009. , Modern Power Electronics & AC Drive	g. ects Using The	805		

	Course Plan		
	COURSE NO:06 EE 7 31 1	L – T –	P: 3 - 0 - 0
	COURSE NAME: EMBEDDED CONTROLLERS	CRE	DITS : 3
MODULE	CONTENT	Contact hrs	End Sem Marks %
Ι	Intel 8051: Architecture - Memory Organization – Instruction set – Addressing modes – Basic Programming. Peripheral: Parallel Ports – Timers and Counters – Interrupts – Serial Communication –ADC, DAC,LCD and keyboard interfacing with 8051. – Assemblers and Compilers – embedded C programming _Generation of .LST and .HEX files for applications using Keil / RIDE IDE. Measurement of voltage, current, speed, power and power factor ,Frequency and PWM implementation using 8051.	10	25%
II	Microchip PIC 16F877: Architecture of PIC 16F877 microcontroller- PIC memory organization - Interrupt structure – Timers / Counters – Capture / Compare / PWM modules - Master Synchronous Serial Port (MSSP) module – USART – A / D Converter module Timers, Comparator module	5	25%
	FIRST INTERNAL EXAM		
II	Instruction set – Different addressing modes. Instruction set – ProgrammingLST and .HEX files generation for applications using MpLab IDE.Measurement of voltage, current, speed, power and power factor - Frequency measurement - PWM implementation using PIC	5	
III	Digital controllers :Overview of Zero Crossing Detectors - Generation of gating signals for Converters, Inverters and chopper circuit - Control of AC/DC electric drives - Implementation of PID controller - Power quality/power factor correction - Solar Power Conditioning (MPPT)	10	25%
	SECOND INTERNAL EXAM		
IV	DSP controller :Introduction toTMS LF2407 DSP controller –peripherals -physical memory – C2xx DSP CPU core-Instruction set -addressing modes – assembly programming - software tools . GPIO – interrupt handling-ADC-Event managers. DSP based implementation of DC_DC BUCK BOOST converter. DSP based control of stepper motor. Space vector PWM technique – DSP implementation	10	25%
	END SEMESTER EXAM		

06 EE 7 41 1 DIGITAL CONTROL SYSTEMS 3-0-0: 3 2015 PRE – REQUISITES: 1. Basics of Difference equations and Z Transform. 2. Basic knowledge in Control Systems Theory. COURSE OBJECTIVES: 7000000000000000000000000000000000000	COURSE NO:	COURSE NAME	CREDIT S	YEAR		
 Basics of Difference equations and Z Transform. Basic knowledge in Control Systems Theory. COURSE OBJECTIVES: To provide an in depth knowledge Digital Control System and its analysis. SYLLABUS Concepts of sampled data control system, Stability analysis, Digital controller design, Digestimator and observer design. COURSE OUTCOME: The students will be able to Model the digital control system and its analysis. Digital Controller, Estimator and Observer design. TEXTBOOKS: Gene F Franklin, J David Powell, Michael Workman, Digital control of dynamic system Pearson education Benchamin C Kuo ,Digital Control Systems,2nd Edition, Saunders Col Publishing,Philadelphia,1992 		DIGITAL CONTROL SYSTEMS		2015		
 2. Basic knowledge in Control Systems Theory. COURSE OBJECTIVES: To provide an in depth knowledge Digital Control System and its analysis. SYLLABUS Concepts of sampled data control system, Stability analysis, Digital controller design, Digestimator and observer design. COURSE OUTCOME: The students will be able to Model the digital control system and its analysis. Digital Controller, Estimator and Observer design. TEXTBOOKS: Gene F Franklin, J David Powell, Michael Workman, Digital control of dynamic system Pearson education Benchamin C Kuo ,Digital Control Systems,2nd Edition, Saunders Col Publishing,Philadelphia,1992 	PRE – REQU	ISITES:				
To provide an in depth knowledge Digital Control System and its analysis. SYLLABUS Concepts of sampled data control system, Stability analysis, Digital controller design, Dig estimator and observer design. COURSE OUTCOME: The students will be able to 1. Model the digital control system and its analysis. 2. Digital Controller, Estimator and Observer design. TEXTBOOKS: 1. Gene F Franklin, J David Powell, Michael Workman, Digital control of dynamic system Pearson education 2. Benchamin C Kuo ,Digital Control Systems,2nd Edition, Saunders Col Publishing,Philadelphia,1992		1				
 SYLLABUS Concepts of sampled data control system, Stability analysis, Digital controller design, Digestimator and observer design. COURSE OUTCOME: The students will be able to Model the digital control system and its analysis. Digital Controller, Estimator and Observer design. TEXTBOOKS: Gene F Franklin, J David Powell, Michael Workman, Digital control of dynamic system Pearson education Benchamin C Kuo ,Digital Control Systems,2nd Edition, Saunders Col Publishing,Philadelphia,1992 	COURSE OB	JECTIVES:				
 Concepts of sampled data control system, Stability analysis, Digital controller design, Digestimator and observer design. COURSE OUTCOME: The students will be able to Model the digital control system and its analysis. Digital Controller, Estimator and Observer design. TEXTBOOKS: Gene F Franklin, J David Powell, Michael Workman, Digital control of dynamic system Pearson education Benchamin C Kuo ,Digital Control Systems,2nd Edition, Saunders Col Publishing,Philadelphia,1992 	To provide an	in depth knowledge Digital Control Syst	tem and its analysis	s.		
estimator and observer design. COURSE OUTCOME: The students will be able to 1. Model the digital control system and its analysis. 2. Digital Controller, Estimator and Observer design. TEXTBOOKS: 1. Gene F Franklin, J David Powell, Michael Workman, Digital control of dynamic system Pearson education 2. Benchamin C Kuo ,Digital Control Systems,2nd Edition, Saunders Col Publishing,Philadelphia,1992	SYLLABUS					
 The students will be able to Model the digital control system and its analysis. Digital Controller, Estimator and Observer design. TEXTBOOKS: Gene F Franklin, J David Powell, Michael Workman, Digital control of dynamic system Pearson education Benchamin C Kuo ,Digital Control Systems,2nd Edition, Saunders Col Publishing,Philadelphia,1992 	-		lysis, Digital contr	oller design, Digital		
 Model the digital control system and its analysis. Digital Controller, Estimator and Observer design. TEXTBOOKS: Gene F Franklin, J David Powell, Michael Workman, Digital control of dynamic syste Pearson education Benchamin C Kuo ,Digital Control Systems,2nd Edition, Saunders Col Publishing,Philadelphia,1992 	COURSE OU	TCOME:				
 Digital Controller, Estimator and Observer design. TEXTBOOKS: Gene F Franklin, J David Powell, Michael Workman, Digital control of dynamic syste Pearson education Benchamin C Kuo ,Digital Control Systems,2nd Edition, Saunders Col Publishing,Philadelphia,1992 	The studen	ts will be able to				
 TEXTBOOKS: 1. Gene F Franklin, J David Powell, Michael Workman, Digital control of dynamic syste Pearson education 2. Benchamin C Kuo ,Digital Control Systems,2nd Edition, Saunders Col Publishing,Philadelphia,1992 	1. Model the digital control system and its analysis.					
 Gene F Franklin, J David Powell, Michael Workman, Digital control of dynamic syste Pearson education Benchamin C Kuo ,Digital Control Systems,2nd Edition, Saunders Col Publishing,Philadelphia,1992 	2. Digital	Controller, Estimator and Observer desi	ign.			
Pearson education2. Benchamin C Kuo ,Digital Control Systems,2nd Edition, Saunders Col Publishing,Philadelphia,1992	TEXTBOOK	S:				
Publishing, Philadelphia, 1992			an, Digital control	of dynamic systems,		
REFERNCES:			ms,2nd Edition,	Saunders College		
	REFERNCES	\$:				
1. K Ogata, Discrete – Time control systems, Pearson education, Asia						
2. M Gopal ,Digital control and state variable methods, Tata McGraw-Hill 2009		igital control and state variable methods.	, Tata McGraw-Hi	11 2009		

	Course Plan		
	COURSE NO: 06 EE 7 41 1	L - T - P	2:3-0-0
	COURSE NAME: DIGITAL CONTROL SYSTEMS	CREDITS : 3	
MODULE	CONTENT	Contact hrs	End Sem Marks %
Ι	Basic concepts in sampled data systems: Discrete time signals-sampling process-effect of sampling- loss of information and noise due to sampling-signal reconstruction-sampling theorem-hold circuits (ZOH,FOH)-z transforms-inverse z transform-difference equations- solution using z transform-system transfer function-poles and zeros-influence of pole location on time response-effect of zeros	10	25%
п	Analysis in z-domain: Stability- Jury's test –Schur Cohn test –bilinear transformation	5	25%
	FIRST INTERNAL EXAM		
П	Routh–Hurwitz method in ω plane Discrete Equivalents- Via numerical integration – pole – zero matching –hold equivalents	7	
III	Digital Controller Design: Using transform techniques –by emulation –by root locus in the z-plane –by frequency response methods – Direct Design –method of Ragazzini-Design using State –Space approach-Controllability-Observability-Control Law Design.	10	25%
	SECOND INTERNAL EXAM		
	Estimator/Observer Design:		
IV	Full and reduced order observers-regulator design –case with reference input –separation principle Case Studies Case Studies	10	25%
	END SEMESTER EXAM		

COURSE NO:	COURSE NAME	CREDITS	YEAR				
06 EE 7 12 1	SOFT COMPUTING TECHNIQUES	3-0-0: 3	2015				
PRE – REQUI	PRE – REQUISITES:						
	Engineering Mathematics ge of MATLAB software						
COURSE OBJ	ECTIVES:						
—	a depth knowledge about the artificial intelligence using this soft computing techniques.	techniques and	l modelling of				
Artificial Neura identification an	l Networks and its applications, Fuzzy Logic cont ad modelling using Least square method, Compute a, Genetic Algorithms and hybrid models.						
COURSE OUT	COURSE OUTCOME:						
The students will be able to							
 Model any system using soft computing techniques like ANN, Fuzzy and GA. Model any hybrid systems like Neuro Fuzzy for electrical drives control. 							
TEXTBOOKS	:						
 J S R Jang, C T Sun, Mizutani, Neuro Fuzzy and Soft Computing. SRajasekharan, VijayaLakhmiPai, Neural Network, Fuzzy logic and Genetic Algorithm, PHI, 2002 							
REFERNCES:							
1. Simo	1. Simon Haykin, Neural networks						
2. Davi	d E Goldberg, Genetic Algorithms.						
3. C T	Lin, C S G Lee, Neural Fuzzy Systems.						
L							

	COURSE NO:06 EE 7 12 1	L – T –	P: 3 - 0 - 0
	COURSE NAME: SOFT COMPUTING	CRE	DITS:3
	TECHNIQUES		
MODULE	CONTENT	Contact hrs	End Sem Marks %
MODULE	Neural Network		
Ι	Different architectures-supervised learning-perceptron- Adaline-Back Propagation-Unsupervised learning- Competitive learning- Kohenonself organizing network- Hebbian learning- Hopfield network- ART network-NNW applications in control, identification and pattern recognition.	10	25%
	Fuzzy Logic: Basic concepts-set theoretic operations-		
II	membership function-fuzzy rules-fuzzy reasoning, fuzzy inference systems	5	250/
	FIRST INTERNAL EXAM		25%
	Mamdani and Sugeno type -defuzzification- fuzzy		
II	controllers-applications in electric drives.	5	
	System Identification		
III	Least Square Method-LSE for non linear load- Validation of simulation model-Computer simulation of continuous	11	
	and discrete system using Matlab Simulink.		25%
	SECOND INTERNAL EXAM		
IV	Hybrid Models : Modeling - Neuro fuzzy inference system-controllers-Back propagation through recurrent learning- Reinforced learning. Genetic Algorithms-Basic concepts-design issues-modeling hybrid models.	11	25%
	END SEMESTER EXAM		

Kerala Technological University

Course No:	Course Name	Credits	Year
06 EE 722 1	DISTRIBUTEDGENERATION	3-0-0-3	2015
UO EE 722 I	AND CONTROL	3-0-0-3	2015

PRE – REQUISITES

- **1.** Electrical power system
- 2. Power electronics

COURSE OBJECTIVES

- To set a firm and solid foundation in distributed generation.
- To analyze the issues related with grid integration and power quality.
- To study the economic aspects and environmental issues in DG.

SYLLABUS

Distributed Generation Definition; Wind power; Solar technology; Biomass; Tidal; Micro turbine; Energy storage; Grid interconnection; Standards; Different topologies;Protection; Power islanding and power quality issues; Economic and environmental aspects.

COURSE OUTCOME

Student will be able to

- Appreciate the role of distributed generation in current scenario.
- Analyze the issues related with grid interconnection.

TEXT BOOKS

- 1. GD Rai, "Non Conventional Energy Sources Khanna Publishers", 2011
- SP Sukatme, "Solar Energy Principles of thermal collection and storage, Tata McGraw Hill, 1996

REFERENCE

- 1. D.Mukherjee, S.Chakrabarti, "Fundamentals of renewable energy systems "New Age International Publishers.
- Remus Teodorescu, Marco Liserre, Pedro Rodríguez "Grid Converters for Photovoltaic and Wind Power Systems ", Wiley Publishers.
- Power Electronics and Renewable Energy Systems: Proceedings of ICPERES 2014 edited by ChinnarajKamalakannan, Padma Suresh, SubhransuSekhar Dash, BijayaKetanPanigrahi

	Course Plan			
	COURSE NO:06 EE 722 1	L – T -	-P:3-0	
MODULE	COURSE NAME: DISTRIBUTED GENERATION AND CONTROL		-0 CREDITS:3	
	CONTENT	Cont acthr s	End Sem Marks %	
Ι	Distributed Generation Definition– Wind Power– wind turbine and rotor types, wind speed –power curve – power coefficient – Tip speed ratio – wind energy distribution. Photovoltaic – Solar cell technology – Photovoltaic power characteristics – MPPT – Applications of PV Systems – solar energy collectors and storages– Biomass Power – Fuel cells types –Tidal power generation schemes–different types – mini and micro hydro power schemes – Energy Storage for use with Distributed Generation – Battery Storage – Capacitor Storage – ultra capacitors – Mechanical Storage – Flywheels – Pumped and Compressed Fluids	12	25 %	
Π	Standards of interconnection –Power electronic converters in PV, wind power generation – Various control techniques for power converters (Inverters, 4 converters) in grid interactive and stand–alone applications.		25 %	
FIRST INTERNAL EXAM				
Π	Phase locked loops –synchronization and phase locking techniques – current control. Protection of the converter –DC bus control during grid faults – converter faults during grid parallel and stand –alone operation	6		
III	Intentional and unintentional islanding of distribution systems – Various islanding issues –anti islanding schemes – Active – Passive.	5	25 %	
	SECOND INTERNAL EXAM			
III	Reactive power support using DG –Power quality issues in DG environment – voltage dip – Voltage	5		

	Economic aspects of DG– Generation cost, investment –Hybrid energy systems –integrated wind – solar			
IV	systems –Wind–diesel systems–Distributed generation in the Indian scenario – case studies– permanent	10	25 %	
	magnet alternators –self–excited induction generators – . Merits and demerits of DG.			
	END SEMESTER EXAM			

06 EE 7 32 1			YEAR
	HIGH VOLTAGE DC TRANSMISSION	3-0-0: 3	2015
PRE – REQUIS	SITES:		
Fundamental kn	owledge of electrical power systems		
explain 2. Provide transmi 3. Provide	ECTIVES: the students to compare HVAC and HVDC the advantages and disadvantages of both. e an in depth knowledge about the various p ission system. e an indepth knowledge about the performants, the methods of control and protection.	arts of a typic	cal HVDC
HVDC Conver	tween HVAC and HVDC transmission, Anaters, Principle of DC link control, Protections, Simulation of HVDC systems.	•	
COURSE OUT	COME:		
the conv 2. Explain applicati	the applications of HVDC transmission syst entional HVAC transmission systems. the different components of HVDC transmis	ssion systems	and their
TEXTBOOKS:			
1. K.R.Pad	iyar, "HVDC Power Transmission Systems"- N	New Age Inter	national
REFERENCES 1. E.W.Ki	: mbark, "Direct Current Transmission", Vol I (New York)- Jo	ohn Wiley
2. E.Uhlma	ann, "Power Transmission by Direct Current", S	pringer– Verla	ag
	ga, "High Voltage Direct Current Transmission"	", (London) Pe	eter Peregrinus.

	COURSE NAME:HIGH VOLTAGE DC		L – T – P: 3 – 0 –0 CREDITS : 3	
MODULE				
	CONTENT	Contact hrs	End Sem Marks %	
Ι	DC power transmission – comparison of AC and DC transmission – Economics of Power transmission – Technical performance – Advantages and disadvantages of DC transmission – Reliability – Application of DC transmission. Types of DC links. Converter Station – Converter Units. Planning for HVDC transmission – Choice of voltage level – Modern trends in DC transmission. Thyristor valve – valve firing – valve design consideration – Grading and damper circuit design – valve protection. Valve tests – Dielectrical and operational tests.	10	25%	
II	HVDC Converters – Analysis, Pulse number. Choice ofConverter configuration – valve rating – transformer rating.Graetz circuits (simplified analysis only) - with and withoutoverlap. Analysis of 2&3 valve conduction mode and 3 &4valve conduction mode		25%	
	FIRST INTERNAL EXAM			
II	Converter bridge characteristics – Rectifier and Inverter characteristics of a 6 pulse and 12 pulse converter	4		
III	Principles of DC link control. Converter control characteristics – modification of control characteristics – system control hierarchy- firing angle control- individual phase control – equidistant pulse control. Current and extinction angle control. Starting and stopping of Dc link – power control. Stabilization of AC ties. Converter faults and protection – Converter faults, protection against over current and voltages in a converter station – Surge arrestor- protection against over voltage.	11	25%	
	SECOND INTERNAL EXAM	I		
	Smoothing reactors – DC lines – DC line insulators – DC			
	breakers – basic concept, characteristics, types and	10		

IV	applications. Sources of reactive power- static VAR systems-		
• •	Thyristor controlled reactor - Types of AC filters (Basic	25%	
	concept only)- DC filters - Carrier frequency and RI noise.		
	Multiterminal DC system -Potential. Application and type.		
	Modeling of DC network.		
	Simulation of HVDC system – system simulation – philosophy and tools only.		
	END SEMESTER EXAM		

COURSE NO:	COURSE NAME	CREDIT S	YEAR			
06 EE 7 42 1	BIO INSPIRED ALGORITHM AND ITS APPLICATION	3-0-0: 3	2015			
PRE – REQU	ISITES:					
	nental concepts of Biology nowledge of optimization					
COURSE OB	JECTIVES:					
To provide an	in depth knowledge in Bio Inspired Algorithm	18.				
SYLLABUS						
Genetic Algori Algorithm	thm ,Ant Colony Optimization ,Particle Swarr	m Optimizati	on ,Fire Fly			
COURSE OU	ТСОМЕ:					
The studen	ts will be able to apply the Bio Inspired Algor	ithms in real	time problems.			
TEXTBOOK 1. Haupt and H	S: aupt, 'Practical Genetic Algorithms' John Wi	ley & Sons 2	004			
2. Dorigo and	Stutzle, 'Ant Colony Optimization'					
3. Maurice Cle	rc. Particle Swarm Optimization. ISTE (Interr	national Scier	ntific			
and Technical	Encyclopedia), 2006.					
4. Xin-She Yan	4. Xin-She Yang: Nature-Inspired Metaheuristic Algorithms. Luniver Press 2010					
REFERNCES:						
1. Sivanandam	S N and S N Deepa :Principles of soft Compu	uting ,Wiley	India			
2. Melanie Mit	chell: An Introduction to Genetic Algorithms.	MIT Press, 1	1996.			

	Course Plan			
	COURSE NO:06 EE 7 42 1	L - T - P : 3 - 0 - 0		
	COURSE NAME: BIO INSPIRED ALGORITHM AND ITS APPLICATION		CREDITS : 3	
MODULE	CONTENT	Contact hrs	End Sem Marks %	
I	Genetic Algorithm Application : Modern Heuristic Search Techniques Genetic Algorithm- Introduction- Encoding-Fitness Function, Premature Convergence, Slow Finishing, Basic			
	Operators, Selection-Tournament Selection, Truncation Selection, Linear Ranking Selection, Exponential Ranking Selection, Elitist Selection, Proportional Selection,-Crossover, Mutation, Control Parameters Estimation, Niching Methods, Parallel Genetic Algorithms, - Application in Drives Tunning of membership function using genetic algorithm. Application of GA to neural networkTunning of controllers.	10	25%	
п	Swarm Intelligence: Ant Colony Optimization:			
	Swarm intelligence general characteristics, Ant Colony	5		
	Optimization: Basic Concepts-The Ant Colony System-		25%	
	Ants' Foraging Behavior and Optimization,-The Max-		2070	
	Min Ant System Minimum Cost Paths			
	FIRST INTERNAL EXAM			
Π	Combinatorial Optimization, Major Characteristics of Ant Colony Search Algorithms-Positive Feedback: Rapid	7		
	Discovery of Good Solution -Use of Greedy Search and			
	Constructive HeuristicInformation-Ant Colony			
	Optimization Algorithms Applications.			
III	Particle swarm optimization:			
	Fundamentals-Concepts of PSO-Comparison with Genetic Algorithm-Application and Implementation	10	25%	
	SECOND INTERNAL EXAM Fire Fly Algorithm:			
IV	Basic Concepts-Application in optimization, power electronics and power system problems.	10	25%	
	END SEMESTER EXAM			

COURSE NO:	COURSE NAME	CREDITS	YEAR
06 EE 7 03 1	SEMINAR II	0-0-2: 2	2015

PRE – REQUISITES: Nil

COURSE OBJECTIVES:

To improve presentation skills and searching ability of research publications in the relevant area of specialization

SYLLABUS:

The student has to register for the seminar and select a topic in consultation with any of the faculty members in the department (or the faculty member offering courses for the programme).

A detailed report on the topic of seminar is to be prepared in the prescribed format given by the department. The seminar shall be of 30 minutes duration and a committee with the Head of the Department as the chairman and two faculty members from the department as members shall evaluate the seminar based on the coverage of the topic, presentation and ability to answer the questions put forward by the committee.

COURSE OUTCOME:

Takers will

- improve the searching ability to find research publications in the area of specialization
- (2) be aware of recent developments in the area of specialization
- (3) improve their presentation skills

Reference:

IEEE Xplore , Elsevier- Science Direct, Springer Journalsetc

COURSE	COURSE NAME	CREDITS	YEAR			
NO:						
06 EE 7 04 1	PROJECT PHASE I	0-0-12:6	2015			
PRE – REQUISITES: Nil COURSE OBJECTIVES:						
(1) conduct literature survey in the area of specialization						
(2) select a r	(2) select a research topic based on literature survey					
(3) simulati	(3) simulation of the selected research topic					
SYLLABUS:	SVLLARUS.					

The project (phase-I) shall consist of research work done by the student or a comprehensive and critical review of any recent development in the subject or a detailed report of project work consisting of experimentation/numerical work, design and/or development work that the student has executed.

In phase-I, the student should decide a topic of project, which is useful in the field or practical life. The student should refer national and international journals, proceedings of national and international conferences. Emphasis should be given to the introduction to the topic, literature review, and scope of the proposed work along with some preliminary work / experimentation carried out on the project topic.

Student should submit two copies of Phase-I project report covering the content mentioned above and highlighting the features of work to be carried out in part-I of the project. The student should follow standard practice of thesis writing.

The student will deliver a presentation on the project work and the assessment will be made by a panel of internal examiners one of which will be the Project Supervisor (internal guide). These examiners may give suggestions in writing to the student to be incorporated in project (phase-II).

Project evaluation weights shall be as follows:-

Project Progress evaluation: 50 Marks

Progress evaluation by the Project Supervisor : 20 Marks

Presentation and evaluation by the committee : 30 Marks

COURSE OUTCOME:

Students will be able to

(1)simulate and analyze the research topic

(2) identify the drawback of the simulated system

(3) propose solutions to improve the performance of the system

References:

(1) IEEE Xplore, Elsevier- Science Direct, Springer Journals etc

(2) Simulation tools - MATLAB/Simulink , PSIM, PSpice etc

Semester IV

COURSE NO:	COURSE N	AME	CREDITS	YEAR
06 EE 7 01 2	PROJECT PH	HASE II	0-0-21: 12	2015
PRE – REQUI	SITES: project phase I			
COURSE OBJ	ECTIVES:			
(1) Hardware in	plementation of project pha	se I simulation		
(2) Publish r	research work in a reputed C	onference and/or	journal	
successful com The work can Conference. Specific weigh	semester the student hat apletion of the work the stu- cried out should lead to tage will be given to the inal project evaluation.	udent should sul	bmit a detailed repo	ort (Thesis).
	ion weights shall be as fol	llows:-		
Total Marks: 1	-			
Project evaluat	ion by the supervisor/s	: 30 Marks		
Evaluation by	the External expert	: 30 Marks	3	
Presentation &	evaluation by the Commi	ittee: 40 Marks	5	
COURSE OUT	COME:			
Students w	ill be able to			
(1)	analyze and implement t	he research wor	rk.	
(2)	publish the research worl	k in a reputed c	onference and/or jo	ournal
References:				
(1) IEEE Xplo	re , Elsevier- Science Dire	ect, Springer Jou	urnals etc	
(2) Hardware	– IEEE standards, data sh	eets of Microchi	ip/Texas Instrumen	ts/Atmel
make microcon	ntrollers, IC's etc.			