Module 5

1. Deflection of Beams
2. Transformation of Stress and strain



Deflection and Slope of Beams

As load is applied on a beam, it deflects.

The deflection can be observed and measured
directly.

Strength and stiffness — design criteria for
beams

Strength criteria — SF & BM
Stiffness criteria — deflection
Elastic curve.



Elastic curve



Beam Differential Equation
OR
Differential Equation for Deflection
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Elastic curve






Consider a segment PQ) of infinitesimal iength ds of the elastic curve of a beam

R be the radius of curvature and d the included angle of the segment

Then, thelengthds=R - db

As ds 1s an infinitesimal length, it can be assumed to be the hypotenuse of a right-angled triangle DEF

F
ds
5
D dx E
d
tan 6 = ki (i)

The slope of the curve at the point P e



Differentiating (1) with respect to x,

do d*
sec? 9 - = ;j
dx
2
orsecze.ds- : =d 4
dx dx2
3 2
or sec 9=d y _,_['.'£=secej
R dx2 dx

d’y (1+tan®9)*?

: - [sec @ = (1 + (tan? )!/?]
dx”




the governing differential equation of the beam



 Flexural Rigidity

* The moment sustained by an element of the
beam is proportional to El

* Thus El is an index of the bending (flexural)
strength of an element — called Flexural
Rigidity of the element.




* Some important equations

We have deflection = y

dy

Slope = —

pe€ 7

2
Moment, M = E]Z_xg
dM d’
Shear force, F = 5 = EI dxg
dF d’

Load intensity, w=—=EI Y

dx  dxt



Slope and Deflection at a point

Methods of Solution
1. Double integration method

2. Macaulay’s method
3. Moment area method
4. Conjugate beam method



Double Integration Method

 The beam differential equation is integrated
twice — deflection of beam at any c¢/s.

Ef % = IM .dx + C; from which slope can be calculated
El-y=[|(M- dx)+ Cx+ C, from which deflection 1s known

* The constants of integration are found by
applying the end conditions.



* a) Cantilever with concentrated load at free end
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Bending Moment at the section =— W(l—x), being hogging
',iE',
Or EI === — W(l—x)
. dy x?
Integrating, EI—= = —W (Ex — ?) + C;
dy
Atx = 0‘*‘*& = 0, therefore C1=10,
Thus E1Z = —w (1x — Z)

orSlope, E ZEI(ZIx— x*)



B2 = —w(ix— 2

2 3
Integrating again, EIy =—W (% — %) + G5
Atx =0,y =0, therefore C; = 0,
Ix* x

Thus Ely = -W (- —3)

2 6

or Deflection, y = — % (3lx* — x7)

Atthe freeend, x =, the slope and deflection are maximum
and are given by
wi? wi3

Slope = — Py and deflection = — Py



b) Concentrated load not at free end
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 Between A and C at any distance x from A,
M = -W (a-x)

* Equations of slope and deflection can be
obtained as in previous case (replacing ¢ by a)

P dx ZEI( )
Deflection, y = — — (3ax? — x3)
' ’ 6EI
dy Wa?
AtC,x=a; hence — = ———
dx 2EI

_ wad
and y=-— 35T

et



* The beam will bend only between A and C

and between B and C it will remain straight (as
BM between B and C = 0)
Wa?

* HenceslopeatB=slopeatC=dv/dx=GF/GE= ~ 2Er
* Now deflection at B = deﬂection at C+ GF

* =deflection at C+( - )GE
Wa® Wa? , W
ie, Deflectionat B= —3—; —2—; (l-a) je——0a .l
47 '
<—x—->i Cc
de I >]|

(a)

‘ 3
If W is at the midpoint, deflection = [M + M . i:' = SWr’

D
3EI 2EI 2] 48E] !
Deflecton = —~<=ZT G
-4

F
(b)  Straight



c) UDL on whole span
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At a section at a disténce x from the free end.

ElﬁzMz_sz

dx® 2
Integrating, EJ L w_x3 + 1L
dx 6

3
ApE g o gra
dx

6
3 3
l ’
Thus, Elﬂ=—wx s =1(13—x3)
dx 6 6 6



4 3
. ; wx wl
Integrating again, E - y=——— + — _x + C,
24 6
4 3
wl wl
Atd, x=1y=0, .. Uso—+—1+G;
24 6
|
wl
or Cy =———
2 s
4 3 4
WX wl wl
Thus, EI-y=- + X ——
24 0:1 8
Therefore, slope and deflection are given by,
W o W83 and y A AP 4 319

dx  6EI 24EI



' slope= —— atx=0
Maximum slop p=s

wi
Maximum deflection= ——— atx = ()

If origin 1is taken at the fixed end, slope and deflection can be worked out to be

y’z——vv_(g’lzx-3lx2+x3); y:—_w___

61°x* — 4l + x*
6EI Bl o TE)



d) UDL on a part of span from fixed end

* Homework




dy wa- wa*
AtC, —=———and y,=—7—"-

e BEI T TRggr ¥ e
Between CB, at any section at a distance x from A, M=0,

2 2
d
E]d_2—0 or i_y.:O or —y=C1
dx dx* dx

L.e. the slope is constant between CB and is equal to sldpe at C.

. IR 4L -
& GE: 6E T 3

Deflection at B = Deflection at C + GF

= Deflection at C +y' - GE

wa4 W613
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e) UDL on a part of span from free end

* Homework
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(v) Uniformly Distributed Load on a Part of Span from Free End  The slope and the deflection at B can be
found by first considering the cantilever loaded for the whole span (Fig. 7.8a) and then deducting the effect
for the span loaded from 4 to C upwards (Fig. 7.8b).
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dy _ wi> _w(l - a)’
dx 6FEI 6EI

Deflection can be found as follows,

Thus slope,

4
wl
* For whole span having uniformly distributed load, Py~ 3Bl
(downwards)

* For span loaded between AC,
w(l - a)* + w(l - a)®
8EI 6E]

-a  (upwards)

Thus deflection of B (downwards) =

wi® _ [w(l - 0)4 5 w(l — a)3 ]
8EI 8EI 6EI



f) A couple at the free end
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(127
EI—%—:—M
dx

lntegrating, ET ;(-:X = - Mx + C1
e

dv
Atx =0, ;)-=0, . €, =0; Thus, Elﬂz——Mx
x

dx

2
Integrating again, EI -y =—_ )y % +C,

Atx=0,y=0, .. C, = 0; Thus, Ely=—%x2
dy M M

; 2
e e s —_X
. (linear) and ¥ 2EI (parabola)



g) Distributed load of varying intensity,
zero at free end




; : ; , wx
Intensity of loading at any cross-section C at a distance x from free end = —

Bending moment at C = load on CB X distance of Centre of load
: (lzvﬁ.x).ﬁ_zvzi
AT 3 6l

d*y

Er%y__wx”
dx? 61
4
Integrating, El ﬁ)_’ 2y S +C
e e
i 4 5
At,X':[,éX:O C’l_ﬂ
dx 24

4. 3
Thus, g7 % _ _Wx W

— e —
——

24 " 4



D 3
. [”x
Integrating again, EI - LW LW,
S Y=T1000 T By 2
. l4 ‘wl4 wi?
Atx=1y=0,. 0=—2—+2_4Cy or C=——
£ 120 ~ 24 270 P 30
3 3 4
ThUS, EI-y:-—lv_x__..}.WI x _wl

1200 24 30
Therefore, slope and deflection at free end i.e. atx=0, .

dy Wl e wi®
dx .. 24El 30E1




Simply supported Beams

a) Concentrated load at midspan

F—Xx—>

W

4%

A
F — /2

B
e —) >T

v R =R, = W2
Consider a section from A4 (origin at 4),

M——-‘/—V-x
2

dzy
EI e

"%
b -
dx 2



dy W’

Integrating, EJ + €
dx l
[ 2 2 2
Atx = 5 .é'Y.:O, . Cl=—‘£.'. Eldy=Wx —-Wl
2" dx 16 de -~ 4 16
: Wl Witx
Integrating again, Ely = — +C
g gag Y 12 16 2
S 2
Atx=0,y=0, .. E1y=Wx Wiy .
12 16
Therefore, slope and deflection are given by,
@ __ W (12_4x?) and y=——W-—(312x;4x3)
dx 16E1 48E1
2
At4,x=0, .. slope = ——EI——
16EI

Deflection at C = ———
. 28

48E]

I Wi
v (o f0 )



Slope and deflection for the portion CB is symmetric as for AC. However, equations for the portion cp
with A4 as origin can also be formed in the following form:

& _ ——W—(4x — 8lx + 31%)
dx 16E]

174

(4Jc3 + 025 —1° — 121x2)
48 ET

y=-



b) Eccentric concentrated load

* Homework




c) UDL on whole span

R =i = wif2
Con51der a section of the beam from A (origin at 4),

d*y wix wx?
El — = -
A 2 2




dy wix®  wx’

Integrating, El — = ——+C
s .
3
[l d wl | 2w l3 wl
At,\‘:—-,——:O,.‘_ ()= . o g I or Cl:-.-————
2" dx T 4§ 8B = 24

dy _ wix?  wx wi’

dx 4 6 24

EI

Integrating again, Ely = = " x+Co

Atx=0,y=0,..C,=0.. Ely=



The maximum deflection is at the midspan, i.e., atx = /2,

s ﬂ(ﬁ 3_1(_1_)4_ Wi (_
Ymx= Er|12\2) 24\2) 24EI\

3 = 3
Slope at 4, (x = 0), Elﬂz—lv_l_ or Q;__Wl__
dx FY a2 Q0 ]

[
2
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d) Distributed load of varying intensity

* Homework



e) Couple at one end
. B
> —

Y. B
© \

Taking moments about 4, R, X /=Mor R, = % (M

M
Similarly, R, =— W)



2
At any section x from 4, EIfd——X =——x+M
dx* !
Integrating, El—=- —AE—' + Mx + C)

Integrating again, Ely = —-—a— + —é"xz +Cix + Gy

o AtA,x=0,y=0

3
=M M2 €y 0r G=0

6/ 2
AtB,x=1y=0
3
6/ 2
2
or ——M-l——-y-lz:"‘ﬁﬁ

1= 61 21 3



Thus slope and deflection equations are

2 .
EIgX:—Mx +Mx—M——%/Il—(3x2—6‘lx+212)

dx 21 3
, 3
and | EIy:-Mx +M 2+C1x———]‘—4-(x — 3ix +2l2x)
6/ 2 6/
Slope at 4 = ———( = =
o GIEL . 3EL:
M M
Slope at B = ———(312 = 612 s 212) =

6lE] : 6EI



Maximum deflection will be where slope is zero, 1.€.,
3x2—6Ix+2P=00rx=0.4231
Thus maximum deflection, |
| M.
Ymax = T (x — 31x e 212x)
=———|(0.4231)° - 31 x (0.4231)* + 21>
~Sam K 0)? = 31 (042307 + 27 x 0.423 ]

0.64M1*
6EI




Macaulay’s method
OR
Method of Singularity function

While applying the double integration method, a separate expression
for the bending moment is needed to be written for each section of the
beam, each producing a different equation with its-own constants of

integration.

The method is convenient for simple cases

In Macaulay’s method, a single equation
is written for the bending moment for all the portions of the beam. The
equation is formed in such a way that the same constants of integration

are applicable to all portions.



R 5 : YO YE
= X
<a» R . T
o S 5 a1 o
iy / >|
1Y b = —Wix 1+ Ry(x— @) - Wy (x — B) | = W (x =)

In the above expression, there are separation lines. |
The portion to the left of the first separation line is valid for the portion AC.

The portion to the left of the second separation line is valid for the portion CD.
The portion to the left of the third separation line is valid for the portion DE.

The whole of the expression is valid for the portion EB.

e 6 » o



It may be noted that the same expression is applicable to all the portions of the beam if all negative terms
Inside the brackets are omitted for a particular section: If x is less than ¢, then the last'term is omitted. If x is

less than b, then the last two terms are omitted and so on. While integrating, the brackets are integrated as a
whole, i.e.,

d2
dx* .
X R W | W .
EI?Z——WI'—Z—+C1 +‘—1'()C—a)2 ——22—(x—b) ——Z—‘(X—C)

3
Ely=- W1?+Clx+C2|+——(x a)‘ M2 (e B) ’——-—(x o)?



Moment Area Method
OR

Mohr’s Theorems

* Convenient for beams acted upon with
point loads where BMD consists of
triangles and rectangles.

* For the case of UDL, Macaulay’s method is
most uitable.
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From the figure dx = Rde

Or de — d_X = M dX:,
R FEI
This equation gives the change of slope between C and D
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* From the above Mohr’s first moment-area
theorem can be stated as below:

* “The difference of slopes between any two
points on an elastic curve of a beam is equal
to the net area of the BMD between these
points divided by EI”.
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 The above equation leads to the statement of
Mohr’s second theorem.

 “The intercepts on a given line between the
tangents to the elastic curve of a beam at any
two points is equal to the net moment taken
about the line of the area of the BMD
between the two points divided by EI”.
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Conjugate Beam Method

2 2

We have, EI'QzM or Q:M_
| - dxz 2.5 R
: A d’ y dM
Differentiating it, EJ - = =F
: ’ 3
| dx”  dx
. T d'y dF
Differentiating it again, EJ . : = =—w
o At dx
gty d? [ a2y w
e e or T
AT ARy dx? \ dx? El
2 2
d ( MJ W d“M
B \EL)” "EL- % TR



_ (i
dx® EI

M _ (i
dp= "

o Thus as indicated by (i), if w indicates the actual loading, and a bending momen

t diagram is drawn, it
provides the bending moment at any cross-section of the heamy

o Inasimilar way it may be said from (i) that if the bending moment diagram (M/ED is assumed as the
loading diagram on the beam (the beam is known as conjugare beam)

L . and a new bending moment
diagram is constructed from this, the diagram will be a deﬂectiqn clirve.



A similar-analogy for the slope can also be deduced

&y _M
A2 El
i(ﬁz)_ﬂ
O dr\de) “EI
d M
or —(slo g) s — iii
i~ R £l (i1i)
Also, d_Fz_w (iv)
dx

Thus shear force diagram drawn with M/EI as loading will provide the slope at any section.



Find expressions for the central deflection and the slope at the
ends of a simply supported beam carrying a central load by conjugate
beam method. "

A

maximum bending moment at the centre is Wi/4,

w2 |B.M./El diag. from actual loading diag Wi
16E/| (loading diag. for conjugate beam) 16El

(b)

Now, in the conjugate beam method, this diagram is to be
considered as loading diagram



first we need to find the reaction on the supports.

) w
wi I 1 W
Ry =iy= — o MR S c 8
4EI 2" 2 16EI AL "
>/ 2—>
Deflections 2 | /
Deflection y at any point at a distance x from A (a)
= bending moment due to load on the conjugate beam | Wi
2 2 :21—51
- W WA xm W W g W 32x — 43
I6EI"  1/2 " 23 16EI" 12EI"  agE > )

Wi2 |B.M./EI diag. from actual loading diag W2
16E/| (loading diag. for conjugate beam) 16El

3 3
Max d th = 37 ——4| = e ——
aximum deflection at the centre 48E] |: ) 9 A8EI

Slopes

Slope at any point at a distance x from A

= Shearing force at the point due to load on the conjugate beam

_ WP WI/AEI
16EI /2

X
X—
2

)

Slope at the ends = L
16EIl

(X =0)



A 10 m long simply supported beam AB carries loads of 80 kN and 60 kN at2 mand 7 m respec-

tively from A.E =200 GPa and | = 150 X 10 mm?*. Determine the deflection and slope under
the loads using conjugate beam method.

80 kN 60 kN
% y-© y B
F2 m»<€——5 m —><3 m~>T
Taking moments about A,
10R, =80 X2+60 X7 s

or R, = 58 kN 164 kN.m \
R,=80+60—58=82kN |

Bending moment at C =82 X 2 = 164 kN-m
Bending moment at D =58 X 3 =174 kN'm



80 kN 60 kN

Lot b

AF2m>|<_5m_>;+3m

(@)

174 kKN.m
164 kN.m

Conjugate beam
: b
Conjugate beamn

Bending moment (conjugate beam) diagram is shown in Fig. 7.69b.
Taking moments about B to find the reaction at A from conjugate loads,

1Y\(2 5 1 5 1
=164 %x2Xx— || —+8 +164x5(3+—) — 5 —(3+—)+174><3x—x2
10R, ( 2)(3 j > + (174 — 164) % ><2 g >

10R, =14213+4510+116.7+522  or  R,=657. -
R, =164 X (2/2) + 164 X 5+ (174 — 164) X (5/2) + 174 X (3/2) ~ 657= 613

For conjugate beam

Shearing force at C = 657 — 164 X (2/2) =493

Shearing force at D =—613 + 174 X (3/2) = —352

Bending moment at C = 657 X 2 —164 X (2/3) = 1204.7
Bending moment at D = 613 X 3 —174 X (3/2) X 1=1578



Slope and deflection
EI=200 X 105 X (150 X 1075) = 30 000 kN-m”

Slope at C =493/30 000 = 0.0164 rad
Slope at D =352/30 000 =0.0117 rad

Deflection at C = 1204.7/30 000 = 0.04016 m = 40.16 mm
Deflection at D = 1578/30 000 = 0.0526 m = 52.26 mm



