RAJAGIRI SCHOOL OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING

COURSE HANDOUT

S7 CE

B TECH IN CIVIL ENGINEERING

RAJAGIRI SCHOOL OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING

VISION

The department strives to excel in the areas of academia, research and industry by moulding professionals in the field of Civil Engineering to build a sustainable world.

MISSION

To impart quality education and mould technically sound, ethically responsible professionals in the field of Civil Engineering with a broad skill set of creativity, critical thinking and effective communication skills to meet the desired needs of the society within realistic socio-economic environmental constraints.

Program Educational Objectives (PEOs)

Within a few years of graduation, the candidate is expected to have achieved the following objectives:

PEO 1: Knowledge in Civil Engineering: Graduates shall attain state of the art knowledge in the various fields of Civil Engineering and will take every opportunity coming their way to augment the already existing knowledge.

PEO 2: Successful in career: Graduates shall achieve successful career which they will be able to commit to with responsibility and passion.

PEO 3: Commitment to society: Graduates shall display a high sense of social responsibility and ethical thinking and suggest sustainable engineering solutions

Program Specific Outcomes (PSOs)

Civil Engineering Graduates will be able to:

PSO 1: Structural Analysis & Design Skills: Acquire ability to analyse, design and develop feasible solutions with emphasis to earthquake resistant design.

PSO 2: Professional Skills: Acquire ability to confront real time problems by developing sustainable solutions.

PSO 3: Interdisciplinary Skills: Graduates will be able to collaborate with engineers from other disciplines to develop products for the betterment of the society.

Program Outcomes (POs)

Engineering Graduates will be able to:

PO 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO 2. Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

INDEX

SL NO:	CONTENTS	PAGE
1	ASSIGNMENT SCHEDULE	4
2	SCHEME: B.TECH 7TH SEMESTER	5
3	CE 401: DESIGN OF STEEL STRUCTURES	A.1
4	CE 403: STRUCTURAL ANALYSIS – III	B.1
5	CE 405: ENVIRONMENTAL ENGINEERING- I	C.1
6	CE 407: TRANSPORTATION ENGINEERING -II	D.1
7	CE 409: QUANTITY SURVEYING AND VALUATION	E.1
8	CE 465: GEO-ENVIRONMENTAL ENGINEERING	F1.1
9	CE 469: ENVIRONMENTAL IMPACT ASSESSMENT	F2.1
10	CE 473: ADVANCED COMPUTATIONAL TECHNIQUES AND OPTIMIZATION	F3.1
11	CE451: SEMINAR & PROJECT PRELIMINARY	S.1
12	CE431: ENVIRONMENTAL ENGINEERING LAB	T.1

ASSIGNMENT SCHEDULE

DATE	SUB. CODE	SUBJECT
1.9.2018	CE 401	Design of Steel Structures
3.9.2018	CE 403	Structural Analysis – III
4.9.2018	CE 405	Environmental Engineering- I
5.9.2018	CE 407	Transportation Engineering -II
6.9.2018	CE 409	Quantity Surveying and Valuation
7.9.2018	CE 465	Geo-Environmental Engineering
7.9.2018	CE 469	Environmental Impact Assessment
7.9.2018	CE 473	Advanced Computational Techniques and Optimization
2.11.2018	CE 401	Design of Steel Structures
5.11.2018	CE 403	Structural Analysis – III
7.11.2018	CE 405	Environmental Engineering- I
9.11.2018	CE 407	Transportation Engineering -II
12.11.2018	CE 409	Quantity Surveying and Valuation
14.11.2018	CE 465	Geo-Environmental Engineering
14.11.2018	CE 469	Environmental Impact Assessment
14.11.2018	CE 473	Advanced Computational Techniques and Optimization

COURSE CODE	COURSE NAME	L-T-P	CREDITS	EXAM SLOT
CE 401	Design of Steel Structures	4-0-0	4	А
CE 403	Structural Analysis – III	3-0-0	3	В
CE 405	Environmental Engineering- I	3-0-0	3	С
CE 407	Transportation Engineering -II	3-0-0	3	D
CE 409	Quantity Surveying and Valuation	3-0-0	3	Е
	Elective 3	3-0-0	3	F
CE451	Seminar & Project Preliminary	0-1-4	2	S
CE431	Environmental Engineering Lab	0-0-3	1	Т

SCHEME: B.TECH 7TH SEMESTER

Total Credits = 22 Hours: 27 Cumulative Credits= 162

Elective 3:-

- 1. CE461 Water Hydrodynamics and Coastal Engineering
- 2. CE463 Bridge Engineering
- 3. CE465 Geo-Environmental Engineering
- 4. CE467 Highway Pavement Design
- 5. CE469 Environmental Impact Assessment
- 6. CE471 Advanced Structural Design
- 7. CE473 Advanced Computational Techniques and Optimization

A

COURSE INFORMATION SHEET

PROGRAMME: CE	DEGREE: BTECH		
COURSE: DESIGN OF STEEL STRUCTURES	SEMESTER: S7		
COURSE: DESIGN OF STEEL STRUCTURES	L-T-P-CREDITS: 3-0-0-3		
COURSE CODE: CE401	COURSE TYPE: CORE		
COURSE AREA/DOMAIN: CIVIL	CONTACT HOURS : 4 hours/Week.		
ENGINEERING	CONTACT HOURS: 4 Hours/ week.		
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: NIL		
ANY): NIL	LAD COURSE NAME: NIL		

SYLLABUS:

UNIT	DETAILS	HOURS						
I	Introduction to steel and steel structures, properties of steel, structural steel sections, Introduction to design: Design loads and load combinations, limit state design concepts, Connections bolted and welded(direct loads)							
II	Tension members-Types of sections- net area- design of tension members-concept of shear lag- use of lug angle-connections in tension members							
III	Compression members- design of struts-solid and built up columns for axial loads- design of lacings and battens- column bases-slab base- gusseted base	10						
IV	Design of beams- laterally restrained and un restrained – simple and compound beams – plate girders subjected to uniformly distributed loads – design of stiffeners.	9						
V	Design of roof trusses- types- design loads and load combinations- assessment of wind loads- design of purlins.Moment resistant/Eccentric connections(in plane and out of plane)	10						
VI	Design of timber structures: types of timber – classification – allowable stresses-design of beams- flexure, shear, bearing and deflection considerations- design of columns. Design of composite beam sections with timber and steel.	9						
TOTAL	HOURS	56						

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	L S Jayagopal,D Testing, Design Of steel structures Chand&Company,2015
T2	S K Duggal, Limit State design of steel structures, Tata Mc Graw Hill,2010
T3	Subramanian N,Design of Steel structures,Oxford University Press,2011
T4	P.Dayaratnam, Design of Steel Structures, Wheeler Publishing, 2003
R1	PunmiaB.C., Jain A.K.and Jain A.K, Design of Steel Structures,Laxmi
	Publications(P)Ltd,2017
R2	Raghupathi,Steel Structures, Tata Mc Graw Hill,2016

T/R	BOOK TITLE/AUTHORS/PUBLICATION
R3	Ramachandra S and Virendra Gehiot, Design of Steel Structures Vol.II, Standard
	Book
	House,2007
R4	V L Shah & Veena Gore,Limit State design of steel structures,Structures
	Publications,2009
R5	William T Segui, Steel Design, Cenage Learning, 6e, 2017
R6	IS 800- 2007, Code of practice for Structural steel design, BIS

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEMESTER
PY100	Engineering physics	Concept of Force vectors	S1
BE100	Engineering Mechanics	Basic concept of Force and its applications	S1
CE202	Structural Analysis 1	Concepts of Bending moment and Shear force	S4

COURSE OBJECTIVES:

1	To introduce the limit state design of steel structural components subjected to			
	bending, compression and tensile loads including the connections			
2	To enable design of structural components using timber.			

COURE OUTCOMES:

Sl No.	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
Students will be able to design bolted and welded connections												
1	Н	М	М									
	Abilit	y of th	e stude	ents to	design	tensio	n mem	bers a	nd bea	ms usin	g the IS	
2	speci	ficatior	ıs									
	Н											
	Abilit	y of th	e stude	ents to	design	colum	ns und	er axia	l loads	using I	S	
3	speci	ficatior	ıs									
	М	М	М									
4	Stude	ents wi	ll be ca	pable (of desig	gning b	eams a	and pla	te gird	lers.		
4	М	Н	М									
5	Students will be able to assess loads on truss and design purlins											
5	М	М	М									
6	Stude	ents wi	ll be ab	le to d	esign s	tructu	ral con	nponer	nts usir	ng timbe	er	
6	М						Н					

JUSTIFICATION FOR CO-PO MAPPING:

CO	PO	MAPPING	JUSTIFICATION
	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of designing of bolted and welded connections.
C01	PO2	MEDIUM	The students will be able to identify and analyse the connections in the limit state design reaching substantiated conclusions using first principles of mathematics and engineering sciences
	PO3	MEDIUM	The students will be able to design solutions for the design of load and load combinations and design system components that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
C02	PO2	HIGH	The students will be able to identify, formulate and review research literature and analyse complex engineering problems in designing the tension members and beams using first principles of mathematics, natural sciences, and engineering sciences
	PO1	MEDIUM	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to design steel columns under axial loads
CO3	P02	MEDIUM	The students will be able to identify and formulate reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
	PO3	MEDIUM	The students will be able to initiate the design solutions for steel structures and design system components that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
	P01	MEDIUM	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to design
C04	PO2	HIGH	The students will be able to identify, formulate, review research literature, and analyse complex engineering problems in designing steel beams and plate girders reaching substantiated conclusions using first principles of mathematics, natural science and engineering science.
	P03	MEDIUM	The students will be able to design solutions for complex engineering problems and design components of beams and

CO	РО	MAPPING	JUSTIFICATION
			plate girders that meet the specific needs for the public health
			and safety.
	P01	MEDIUM	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems in designing roof truss.
C05	PO2	MEDIUM	The students will be able to identify and formulate the design of roof truss and purlins reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
	PO3	MEDIUM	The students will be able to initiate the design solutions for structures and design system components that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
C06	P01	MEDIUM	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of designing structural components of timber sections
	PO7	HIGH	Understand the impact of the professional engineering solutions in societal and environmental contexts by using material timber for the construction purpose and demonstrate the knowledge of and need for sustainable development.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl No	DESCRIPTION	PROPOSED ACTIONS
1	Comparison of various design methods and	Seminars, Assignments
	materials available	

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl No	DESCRIPTION	
1	Concept of Torsion	

WEB SOURCE REFERENCES:

Sl No	DESCRIPTION
1	www.nptel.ac.in
2	INSDAG materials

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	\checkmark	STUD. ASSIGNMENT	\checkmark	WEB RESOURCES	
LCD/SMART BOARDS		STUD. SEMINARS		ADD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	\checkmark	STUD. SEMINARS	TESTS/MODEL EXAMS	\checkmark	UNIV. EXAMINATION	\checkmark
STUD. LAB PRACTICES		STUD. VIVA	MINI/MAJOR PROJECTS		CERTIFICATIONS	
ADD-ON COURSES		OTHERS				

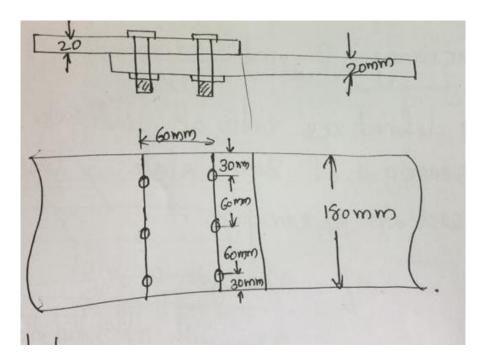
ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	\checkmark	STUDENT FEEDBACK ON FACULTY (TWICE)	\checkmark
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS		OTHERS	

Prepared by ANITHA VARGHESE

Approved by Dr. Aysha Zeneeb Majeed

COURSE PLAN

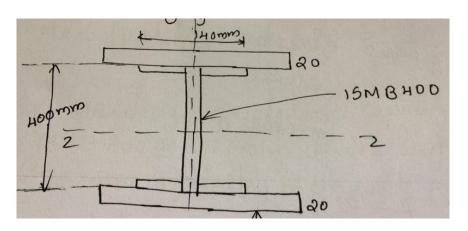

HOUR	MODULE	TOPICS PLANNED
HOUR 1	1	Introduction to steel and steel structures
HOUR 2	1	Properties of steel, structural steel sections
HOUR 3	1	Bolted connections and welded connections, different types
HOUR 4	1	Advantages and disadvantages, lap joint, Butt joint
	1	Design loads and load combinations ,limit state design
HOUR 5	1	concepts
HOUR 6	1	Problem in bolt connection
HOUR 7	1	Contd
HOUR 8	1	Problem in welded connection
HOUR 9	1	Contd
HOUR 10	1	Discussion on problem
HOUR 11	1	Discussion on problem
HOUR 12	2	Tension member definition ,types of sections
HOUR 13	2	Design of tension member ,procedure steps
HOUR 14	2	Contd
HOUR 15	2	Shear lug angle concept ,uses
HOUR 16	2	Problem 1 on Tension member
HOUR 17	2	Contd
HOUR 18	2	Contd
HOUR 19	2	Problem 2
HOUR 20	2	Contd
HOUR 21	2	Contd
HOUR 22	2	Discussion
HOUR 23	2	Discussion
HOUR 24	3	Compression member definition ,design of struts theory
HOUR 25	3	Problem
HOUR 26	3	Design of solid and built up columns for axial load ,problem
HOUR 27	3	Contd
HOUR 28	3	Design of lacing, problem
HOUR 29	3	Design of batten ,problem
HOUR 30	3	Design of column base
HOUR 31	3	Design of slab base
HOUR 32	3	Design of gusseted base
HOUR 33	3	Discussion
HOUR 34	4	Problem on Design of beams laterally restrained
HOUR 35	4	Contd
HOUR 36	4	Problem on design of beams unrestrained
HOUR 37	4	Contd
HOUR 38	4	Discussion
HOUR 39	4	Discussion
HOUR 40	4	Plate girders subjected to uniformly distributed load
HOUR 41	4	Contd
HOUR 42	4	Contd

HOUR 43	4	Contd
HOUR 44	4	Design of Stiffners
HOUR 45	4	Contd
HOUR 46	4	Contd
HOUR 47	4	Discussion
HOUR 48	4	Discussion
HOUR 49	5	Roof truss types ,parts of roof truss
HOUR 50	5	Design load and load combinations
HOUR 51	5	Design of Roof truss
HOUR 52	5	Contd
HOUR 53	5	Contd
HOUR 54	5	Contd
HOUR 55	5	Contd
HOUR 57	5	Contd
HOUR 58	5	Contd
HOUR 59	5	Types of timber, classification ,allowable stresses
HOUR 60	5	Design of beams
HOUR 61	5	Contd
HOUR 62	5	Contd
HOUR 63	5	Contd
HOUR 64	5	Design of columns
HOUR 65	5	Contd
HOUR 59	5	Contd
HOUR 60	5	Design of composite sections. steel and timber
HOUR 61	5	Contd
HOUR 62	5	Contd

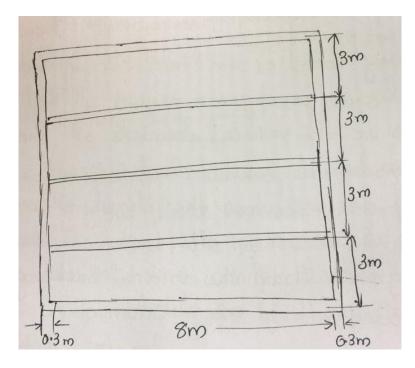
ASSIGNMENT – I

All questions are compulsory

1. Find efficiency of Lap joint shown in the fig .Given M20 bolts of grade 4.6 and Fe410(E250) plates are used

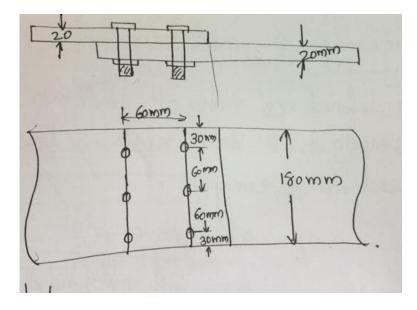


- 2. Design a lap joint between two plates each of width 120mm, if the thickness of one plate is 16mm and the other is 12mm. The joint has to transfer a design load of 160kn. The plates are of Fe410 grade. Use bearing type bolt.
- 3. Explain the properties of Steel in detail
- 4. Explain different types of structural steel sections


ASSIGNMENT – II

All questions are compulsory

1. Determine the load carrying capacity of column section shown in fig.If its actual length is 4.5 m. Its one end may be assumed to be fixed and the other end is hinged


- Calculate the moment carrying capacity of laterally unrestrained beam made of ISMB 400 and length of member is equal to4m. Also find maximum factored load that can be carried by the beam.
- 3. A roof of a hall measuring 8mx12m consists of 100mm thick RCC slab supported on steel I beams spaced 3m apart as shown in the fig .The finishing load may be taken as 1.5 kN/m2 and live load as 1.5 kN/m2. Design the steel beam

QUESTION BANK

Module 1

- 1. Explain properties of steel. Explain its advantages and disadvantages
- 2. Explain structural steel sections
- 3. What are the different types of loads acting on steel sections and its effects
- 4. Explain limit state of design
- 5. Explain types of bolted connections
- 6. Explain classification of bolt connections
- 7. Explain advantages and disadvantages of High Strength Friction Grip Bolt
- 8. What are the advantages of bolt connection
- 9. Explain types of bolted joint and types of failures
- 10. Find efficiency of Lap joint shown in the fig .Given M20 bolts of grade 4.6 and Fe410(E250) plates are used

- 11. Design a lap joint between two plates each of width 120mm,if the thickness of one plate is 16mm and the other is 12mm.The joint has to transfer a design load of 160kn.The plates are of Fe410 grade .Use bearing type bolt.
- 12. Explain advantages and disadvantages of welded connections
- 13. Types of welded connections
- 14. A 18mm thick plate is joined to a 16mm plate by 200m long butt weld. Determine strength of joint if,
 - a. A double V butt weld is used
 - b. A single V butt weld is used.

Assume that Fe410grade plates and shop weld are used.

Module II

- 1. What are the types of Tension members? Explain
- 2. Explain net sectional area of a tension member
- 3. Explain the procedures followed in the design of an axially loaded tension member
- 4. Explain the procedures in the design of a tension member subjected to axial load and Bending moment
- 5. Explain the concept of shear lag
- 6. What is Lug Angle? Where it is used?
- 7. Write short notes on member splices and Gusset plate.
- 8. Explain different modes of failure of Tension members
- 9. Determine the tensile strength of a roof truss diagonal 100x75x10mm.The longer leg is connected to the gusset plate with 20mm diameter bolts in one row. Number of bolts used is 6, the edge/end distance=30mm and pitch=50mm
- 10. Design a tension member to carry a factored force of 340kN. Use 20mm diameter black bolts and a gusset plate of 8mm thick.
- 11. A tension member of truss consists of a single angle ISA 125X75X10mm carrying a factored load of 300kn if 20mm diameter bolts are used .Design the connection to a gusset plate using a lug angle.

Module III

- 1. With neat sketches explain different types of the following
 - a. Splices
 - b. Base connections
- 2. Determine the load carrying capacity of a strut made with ISA 10075, 10mm, if its length is 2.8m in the following cases of connections
 - a. One bolt used
 - b. Two bolts used
 - c. Welded rigidly to gusset plate
- 3. Design a gusseted base to carry an axial factored load of 3000Kn.The column is ISHB450@855N/m with two 250x22mm cover plates on either side. The effective height of the column is 5m.The column is to rest on M20 concrete pedestal.

Module IV

- 1. Distinguish between laterally restrained and unrestrained beams
- 2. What is meant by a Stiffener? Explain with sketches
- 3. What is a plate girder? Where it is used?
- 4. Design the floor beam shown in fig. The beam is laterally restrained. Check for shear and deflection

- 5. Design a built up column with two channels placed face toface. The column is of 6.6m effective length and supports a load of 1080Kn. Also design the Lacing
- 6. Design a built up column with four angles laced together. The effective length of the column is 7.2m and it supports a load of 1800Kn
- 7. A column section ISHB 225@459.1 n/m is to be spliced at floor level. The forces at the section are axial load, transverse shear and bending moment of 325Kn, 90kn, 31knm respectively. Design a suitable splice
- 8. A plate girder with Fe415 steel plate is having 12mmX1500mm web plates and 56mmX500 mm flange plates. Determine the
 - a. Design flexural strength, if the compression flange is supported laterally.
 - b. Design strength in shear if no intermediate stiffeners are used
 - c. Design shear strength, if stiffeners are provided at every 2m interval.
- 9. The following data refers to a gantry girder on which an electrically operated crane of capacity 200kn moves,

Span of gantry girder =6	óm
Span of crane girder	=18m
Crane capacity	=200Kn
Self weight of crane girder	=180kn
Self weight of trolley	=75Kn
Minimum hook approach	=1m
Distance between wheels	=3.5 m
Self Weight of rails	=.3Kn/m

Determine

- a. The maximum moment and shear force due to vertical and horizontal loads
- b. Check whether ISMB 600 with ISMC 300 on compression flange is adequate to
 - i. Carry moment
 - ii. Carry shear force
 - iii. In buckling resistance
 - iv. In limiting deflections

Module V

- 1. Different types of Roof truss?
- 2. Explain the loads and load combinations acting on roof truss
- 3. Design a roof truss of span 15m spacing 4m o be built near Visakapattanam.

Class of building-General with life of 50 years.

Terrain category- 2

Maximum dimension -40m

Width of building -15m

Height at eve level -8m

Topography -Theta less than 3degrees

Permeability -Medium

Span of truss -15m Pitch -1/5 Sheeting -AC sheets Spacing of purlins -1.35 m Spacing of trusses -4m

Module VI

- 1. Explain the procedure for designing of a Timber beam
- 2. Explain the procedure for designing of a Timber column
- 3. Explain the procedure for designing of a composite beam with steel and timber

CE 403 STRUCTURAL ANALYSIS - III

B

COURSE INFORMATION SHEET

PROGRAMME: CE	DEGREE: BTECH	
COURSE: STRUCTURAL ANALYSIS - III	SEMESTER: S7	
COURSE: STRUCTURAL ANALISIS - III	L-T-P-CREDITS: 3-0-0-3	
COURSE CODE: CE403	COURSE TYPE: CORE	
REGULATION: 2016	COURSE I IFE: CORE	
COURSE AREA/DOMAIN: CIVIL	CONTACT HOURS : 4 hours/Week.	
ENGINEERING	CONTACT HOORS: 4 Hours/ week.	
CORRESPONDING LAB COURSE CODE	LAB COURSE NAME: NIL	
(IF ANY): NIL	LAD COURSE NAME: NIL	

SYLLABUS:

UNIT	DETAILS	HOURS
I	Approximate Methods of Analysis of Multi-storeyed Frames: Analysis for vertical loads-substitute frames – loading condition for maximum hogging and sagging moments in beams and maximum bending moment in columns – wind load analysis of multi-storeyed frames – portal method and cantilever method for lateral load analysis.	6
II	Matrix analysis of structures: static and kinematic indeterminacy – force and displacement method of analysis – definition of flexibility and stiffness influence coefficients – Concepts of physical approach	6
III	Flexibility method: flexibility matrices for truss and frame elements – load transformation matrix – developmentt of total flexibility matrix of the structure – analysis of simple structures – plane truss and plane frame – nodal loads and element loads – lack of fit and temperature effects	7
IV	Stiffness method: Development of stiffness matrices by physical approach – stiffness matrices for truss and frame elements – displacement transformation matrix – analysis of simple structures – plane truss and plane frame – nodal loads and element loads – lack of fit and temperature effects	7
v	Introduction to direct stiffness method – Rotation of axes in two dimensions, stiffness matrix of elements in global co-ordinates from element co-ordinates – assembly of load vector and stiffness matrix, solution of two span continuous beam – single bay single storey portal frame.	8
VI	Structural dynamics – introduction – degrees of freedom – single degree of freedom subjected to harmonic load – linear systems – equation of motion, D'Alembert's principle – damping – free response of damped and undamped systems – logarithmic decrement – transient and steady state responses, Dynamic magnification factor – Vibration isolation – Concept of two degree of freedom systems (No derivation and numerical problems)	8
TOTAL	HOURS	42

TEXT/REFERENCE BOOKS:

	NEI ERENCE DOORS.
T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	G S Pandit and S P Gupta, Structural analysis a Matrix approach, McGraw Hill
	Education (India), 2e, 2008
T2	Gere, J.M. and William Weaver, Matrix Analysis of framed structures, CBS
	Publishers, 1990
Т3	Kenneth M Leet, Chia Ming Uang, Anne M Gilbert, Fundamentals of structural
	analysis, Tata McGraw Hill Pvt Ltd., 4e, 2010
T4	Reddy, C.S., Basic Structural Analysis, Tata McGraw Hill, 3e, 2011
R1	Anil. K. Chopra, Dynamics of structures, Pearson Education/ Prentice Hall India,
	5e, 2016
R2	Clough R.W. and Penzein, J., Dynamics of structures, Tata McGraw Hill, 1995
R3	Madhujith Mukhopadhyay and Abdul Hamid Sheikh, Matrix and Finite Element
	Analysis of Structures, Ane Books India, 2009
R4	Mario Paz , Structural Dynamics: Theory & Computation, 2e, CBS Publishers,
	2004
R5	Rajasekharan. S. and Sankarasubramanian G., Computational structural
	Mechanics, PHI, 2009
R6	Wang C.K., Matrix method of structural analysis, International Text book
	company, 1970

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEMESTER
BE100	Engineering Mechanics	Fundamentals of application of	S1
		load	
CE201	Mechanics of Solids	Loads and supports. Drawing	S3
		the bending moment diagrams	
		and shear force diagrams of	
		basic determinate structures	
CE202	Structural Analysis - I	Calculation of deflection,	S4
		introduction to statically	
		indeterminate structures	
CE303	Structural Analysis - II	Analysis of statically	S5
		indeterminate structures	

COURSE OBJECTIVES:

1	To enable the students to have a comprehensive idea of matrix structural analysis
	with emphasis on the relative advantages of the flexibility method and the
	stiffness method
2	To enable the students to visualize structural dynamics problems with a proper
	blend of structural analysis and vibration theory

COURSE OUTCOMES:

Sl No.	P01	P02	P03	PO4	P05	P06	P07	PO8	P09	P010	P011	P012
	The students will be able to analyse multi-storeyed frames for vertical and										d	
1												
	Н	Н	М									
	The s	tudent	s will t	oe able	to und	erstan	d the b	asic co	oncepts	and de	finition	s of
2	matri	x analy	sis of	structu	ires	-	-		-			
		L										
3	The s	tudent	s will k	oe able	to dev	elop fle	exibilit	y matr	ix of a s	structur	e	
5	Н	М	L									
	The s	tudent	s will k	oe able	to ana	lyse sii	nple p	lane tr	usses a	nd plan	e frame	S
4	-	using flexibility method										
	Н	Н	М									
5		1		e able	to dev	elop st	iffness	matrix	c of a st	ructure	9	
0	Н	М	L									
								lane tr	usses a	nd plan	e frame	S
6	_	1		hod (p	hysica	l appro	ach)			[1	
	Н	Н	М									
						lyse sii	nple p	lane tr	usses a	nd plan	e frame	s
7	0	direct	1	ss met	hod	1	1	1	1		T	
	Н	Н	М									
			s will k	be able	to und	erstan	d the b	asic co	oncepts	of stru	ctural	
8	dynai											
	М	L										

JUSTIFICATION FOR CO-PO MAPPING:

CO	PO	MAPPING	JUSTIFICATION							
	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of multi-storeyed frames							
C01	PO2	HIGH	The students will be able to identify and analyse multi- storeyed frames reaching substantiated conclusions using first principles of mathematics and engineering sciences							
	PO3	MEDIUM	The students will be able to design solutions for multi- storeyed frames and design system components that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations							
C02	PO2	LOW	The students will be able to identify, formulate and review research literature for matrix methods reaching							

CO	PO	MAPPING	JUSTIFICATION
			substantiated conclusions using first principles of
			mathematics, natural sciences, and engineering sciences
	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to develop flexibility matrix
C03	PO2	MEDIUM	The students will be able to identify and formulate flexibility matrix reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
	PO3	LOW	The students will be able to initiate the design solutions for structures and design system components that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
	PO1	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of plane trusses and plane frames using flexibility method
C04	PO2	HIGH	The students will be able to identify, formulate, review research literature, and analyse plane trusses and plane frames using flexibility method reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
	PO3	MEDIUM	The students will be able to design solutions for plane trusses and plane frames using flexibility method
	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to develop stiffness matrix
C05	PO2	MEDIUM	The students will be able to identify and formulate stiffness matrix reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
	PO3	LOW	The students will be able to initiate the design solutions for structures and design system components that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
C06	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of plane trusses and plane frames using stiffness method (physical approach)

CO	РО	MAPPING	JUSTIFICATION
	PO2	HIGH	The students will be able to identify, formulate, review research literature, and analyse plane trusses and plane frames using stiffness method (physical approach) reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
	P03	MEDIUM	The students will be able to design solutions for plane trusses and plane frames using stiffness method (physical approach)
	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of plane trusses and plane frames using direct stiffness method.
C07	PO2	HIGH	The students will be able to identify, formulate, review research literature, and analyse plane trusses and plane frames using direct stiffness method reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
	P03	MEDIUM	The students will be able to design solutions for plane trusses and plane frames using direct stiffness method
C08	P01	MEDIUM	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization understand the basic concepts of structural dynamics
0.08	P02	LOW	The students will be able to identify and formulate basic concepts of structural dynamics reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl No	DESCRIPTION	PROPOSED ACTIONS
1	Characteristics of stiffness and flexibility matrix	Assignment

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl No	DESCRIPTION
1	Developing a C++ program or an excel sheet to analyse structures using
	stiffness method

WEB SOURCE REFERENCES:

Sl No	DESCRIPTION
1	www.nptel.ac.in

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	\checkmark	STUD. ASSIGNMENT	\checkmark	WEB RESOURCES	
LCD/SMART BOARDS		STUD. SEMINARS		ADD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	\checkmark	STUD. SEMINARS	TESTS/MODEL EXAMS	\checkmark	UNIV. EXAMINATION	\checkmark
STUD. LAB PRACTICES		STUD. VIVA	MINI/MAJOR PROJECTS		CERTIFICATIONS	
ADD-ON COURSES		OTHERS				

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	\checkmark	STUDENT FEEDBACK ON FACULTY (TWICE)	\checkmark
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS		OTHERS	

Prepared by Nimisha Reji

Approved by Dr. Aysha Zeneeb Majeed

COURSE PLAN

HOUR	MODULE	TOPICS PLANNED
HOUR 1		Introduction, substitute frame method
HOUR 2	1	Problem 1.1
HOUR 3		Problem 1.2
HOUR 4		Problem 1.2 contd
HOUR 5		Lateral load analysis, portal method, problem 1.3
HOUR 6		Cantilever method. Problem 1.4
HOUR 7		Problem 1.5
HOUR 8	2	Static indeterminacy
HOUR 9		Internal indeterminacy, problems
HOUR 10		Kinematic indeterminacy
HOUR 11		Problems
HOUR 12		Methods of analysis
HOUR 13		Flexibility and stiffness
HOUR 14	3	Flexibility method, steps, flexibility influence coefficients
HOUR 15		Equivalent joint loads, problems on analysis of beams
HOUR 16		Problems on analysis of beams
HOUR 17		Problems on analysis of frames
HOUR 18		Problems on analysis of frames
HOUR 19		Problems on analysis of trusses
HOUR 20		Problems on analysis of trusses
HOUR 21	4	Stiffness method, steps, stiffness influence coefficients
HOUR 22		Problems on analysis of beams
HOUR 23		Problems on analysis of beams
HOUR 24		Problems on analysis of frames
HOUR 25		Problems on analysis of frames
HOUR 26		Problems on analysis of trusses
HOUR 27		Problems on analysis of trusses
HOUR 28	5	Direct stiffness method, steps
HOUR 29		Stiffness matrix of elements
HOUR 30		Problems on analysis of beams
HOUR 31		Problems on analysis of beams
HOUR 32		Problems on analysis of beams
HOUR 33		Problems on analysis of frames
HOUR 34		Problems on analysis of frames
HOUR 35		Problems on analysis of frames
HOUR 36	6	Structural dynamics - introduction, degrees of freedom
HOUR 37		Single degree of freedom subjected to harmonic load, linear
		systems
HOUR 38		Equations of motion, D'Alembert's principle
HOUR 39		Free response of damped and undamped systems
HOUR 40		Logarithmic decrement
HOUR 41		Transient and steady state vibrations
HOUR 42		Dynamic magnification factor, vibration isolation
HOUR 43		Concept of two degree of freedom system

ASSIGNMENT – I

All questions are compulsory

- 1. Analyse the building frame shown in Fig. 1 for **gravity loads only** by substitute frame method. Draw BMD for the 1st floor and tabulate the maximum values obtained for the following cases:
 - a. Maximum sagging moment at the centre of each of the 4 spans in 1st floor
 - b. Maximum hogging moment at the centre of each of the 4 spans in 1st floor
 - c. Maximum hogging moment at each support in 1st floor
 - d. Maximum moment in columns

All floors and bays are loaded as follows:

At intermediate floors: LL = 15 kN/m and DL = 10 kN/m

At roof level: LL = 12 kN/m and DL = 10 kN/m

Size of columns = 300mm x 550mm (550mm parallel to the plane of frames) Size of beams = 300mm x 450mm

- 2. Analyse the building frame shown in Fig. 1 for lateral loads of magnitude 50kN, 70kN, 85kN and 60kN for 1st floor, 2nd floor, 3rd floor and roof level respectively, the loads acting at the extreme left end of the frame towards the right using
 - a. Portal method
 - b. Cantilever method

Compare and comment on the results.

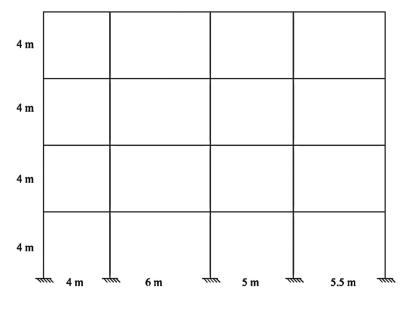
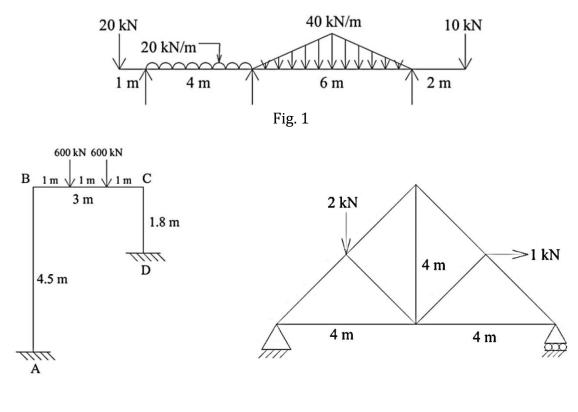


Fig. 1

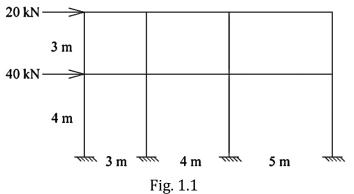

To be submitted on September 4th, 2018

ASSIGNMENT – II

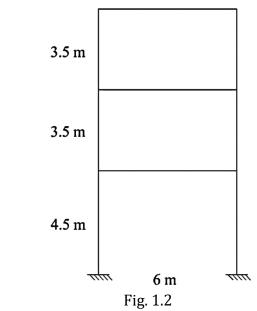
All questions are compulsory

- 1. What are the characteristics of stiffness and flexibility matrix?
- 2. Analyse the following structures (Figures 1, 2 & 3) using
 - a. Flexibility method
 - b. Stiffness method using physical approach
 - c. Direct stiffness method

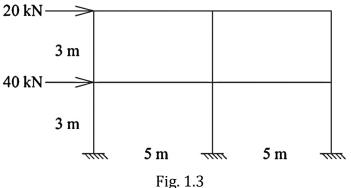
Compare and comment on the results.


3. Explain D'Alembert's Principle

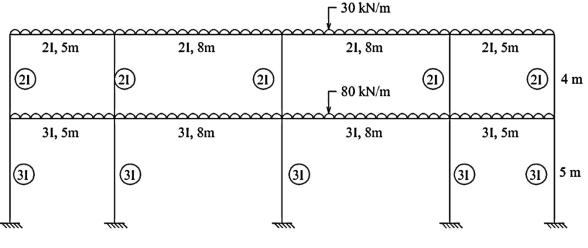
To be submitted on November 5th, 2018


QUESTION BANK

MODULE I

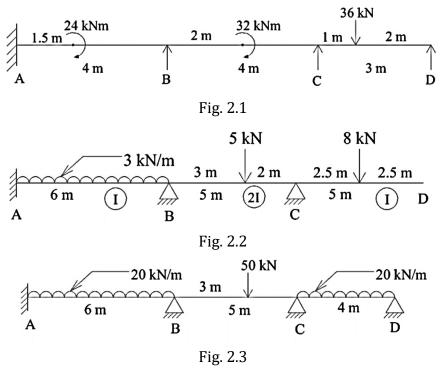

1. Analyse the frame shown in Fig. 1.1 using portal method.

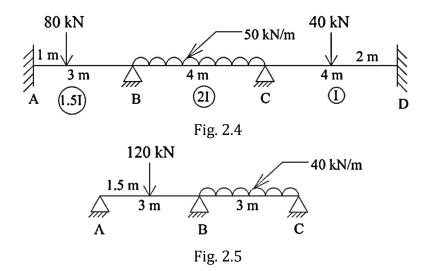
2. Analyse the frame shown in Fig. 1.2 using cantilever method. All columns have the same cross-sectional area

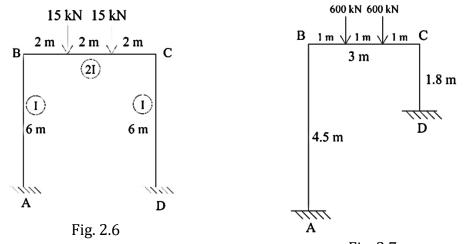


3. Analyse a frame shown in Fig. 1.3 using cantilever method. Draw the BMD.

4. Analyse the building frame shown in Fig. 1.4 for **gravity loads only** by substitute frame method. Draw BMD for the 1st floor and tabulate the maximum values obtained for the following cases:


- a. Maximum sagging moment at the centre of each of the 4 spans in 1st floor
- b. Maximum hogging moment at the centre of each of the 4 spans in 1st floor
- c. Maximum hogging moment at each support in 1st floor
- d. Maximum moment in columns




MODULE II

- 1. Differentiate force and displacement methods of analysis
- 2. Determine the static and kinematic analysis of the following structures

Course Handout, S7CE

16 kN

2.5 m

1 m

2.5 m

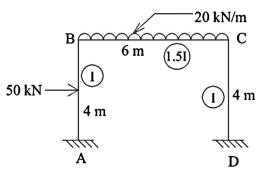


Fig. 2.8

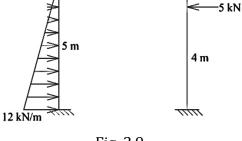
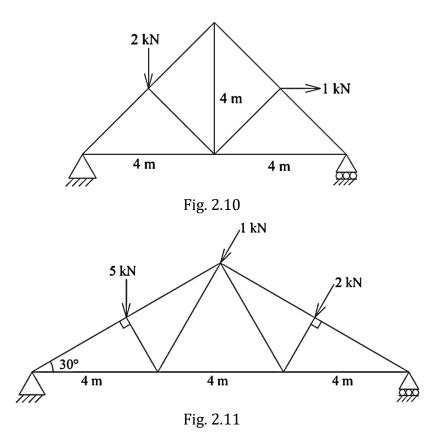
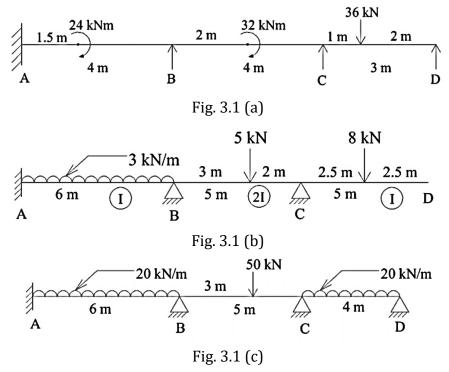
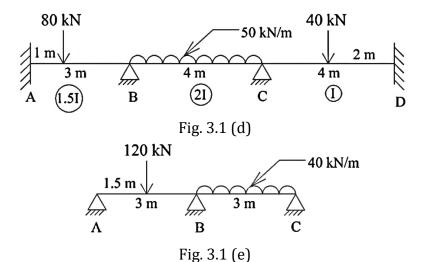
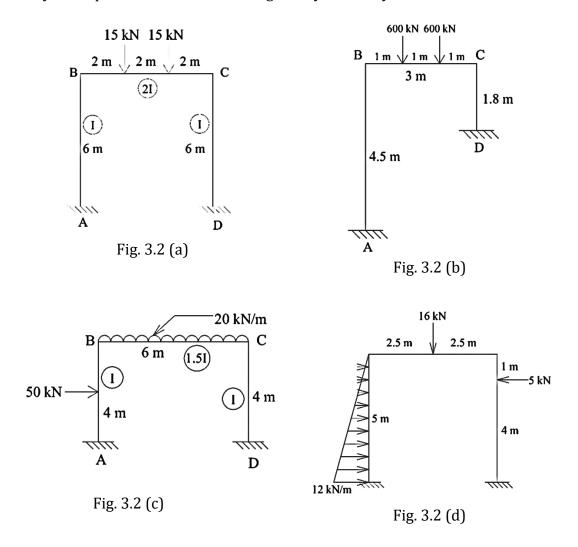
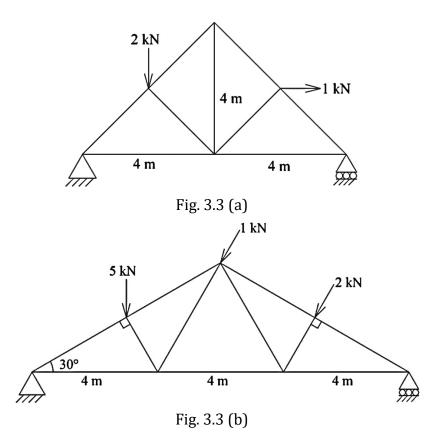




Fig. 2.9

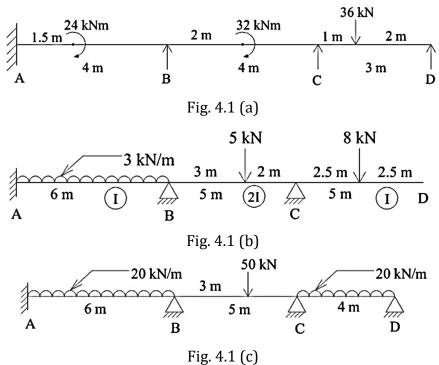


MODULE III

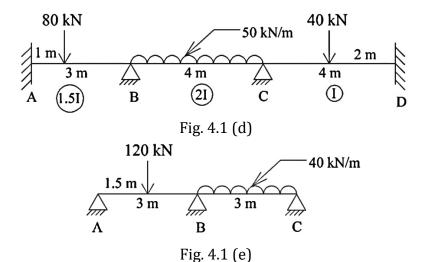

1. Analyse the continuous beams shown in Fig. 3.1 by flexibility method


Course Handout, S7CE

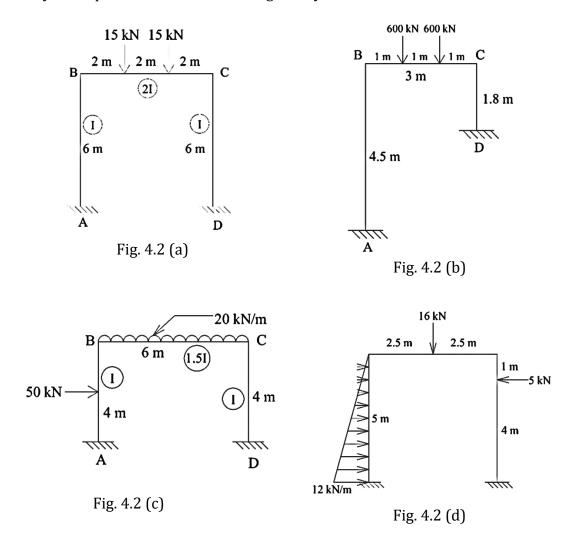
2. Analyse the plane frames shown in Fig. 3.2 by flexibility method

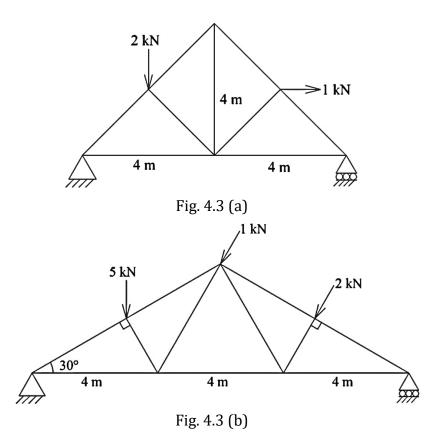


3. Analyse the plane trusses shown in Fig. 3.3 by flexibility method

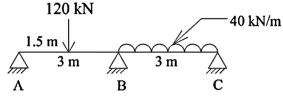


MODULE IV

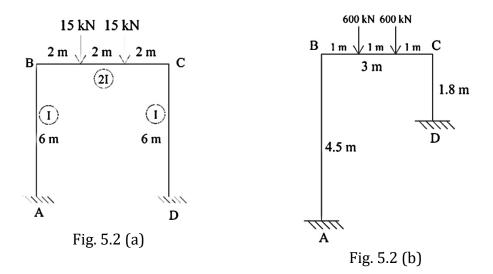

1. Analyse the continuous beams shown in Fig. 4.1 by stiffness method

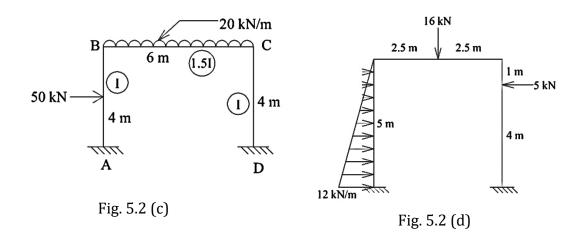

Course Handout, S7CE

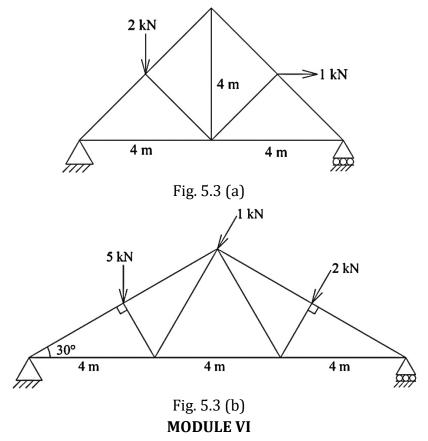
2. Analyse the plane frames shown in Fig. 4.2 by stiffness method



3. Analyse the plane trusses shown in Fig. 4.3 by stiffness method


MODULE V


1. Analyse the continuous beams shown in Fig. 5.1 by direct stiffness method



2. Analyse the plane frames shown in Fig. 5.2 by direct stiffness method

3. Analyse the plane trusses shown in Fig. 5.3 by direct stiffness method

- 1. What is dynamic loading?
- 2. A harmonic motion has a maximum velocity of 6m/s and it has a frequency of 12cps. Determine its period, amplitude and maximum acceleration.
- 3. Find the natural period of vibration of a system in which a simply supported beam having a span of 4m is having a spring mass system attached at a distance of 1m from the end, having a constant of 25,000 N/m and the mass of the body is "M" kg.

The circular cross-section of the beam is having a diameter of 15cm. E = 2×10^5 N/mm².

- 4. Explain with examples
 - a. Critically damped system
 - b. Overdamped system
 - c. Underdamped system
- 5. A vibrating system consisting of a weight of 4.5kg and a spring with stiffness k = 0.4kg/mm is viscously damped so that the ratio of two consecutive amplitudes is 1.00 to 0.85. Determine:
 - a. The natural frequency of the undamped system
 - b. The logarithmic decrement
 - c. The damping ratio
 - d. The damping coefficient
 - e. The damped natural frequency
- 6. Determine the natural frequency of a fixed beam of length L, carrying a concentrated weight W at the centre. Neglect the mass of the beam.

CE 405 ENVIRONMENTAL ENGINEERING I

 \mathbf{C}

COURSE INFORMATION SHEET

PROGRAMME: CE	DEGREE: BTECH
COURSE: ENVIRONMENTAL	SEMESTER: S7
ENGINEERING- I	L-T-P-CREDITS: 3-0-0-3
COURSE CODE: CE405, REGULATION:	COURSE TYPE: CORE
2016	COURSE I IPE: CORE
COURSE AREA/DOMAIN: CIVIL	CONTACT HOURS : 4 hours/Week.
ENGINEERING	CONTACT HOOKS: 4 Hours/ week.
CORRESPONDING LAB COURSE CODE	LAB COURSE NAME: ENVIRONMENTAL
(IF ANY): CE431	ENGINEERING LAB

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	Introduction of environment- sources of water supply-Water demand, quantification of water demand through population forecasting –Factors affecting consumption-Fluctuations in demand	7
II	Types of intakes-Conveyors, pumps and location of pumping station- Quality of water - Drinking water standards - Physical, chemical and biological analysis.	6
III	Treatment of water-Theory and principles of Sedimentation tanks- Stoke's law-Types of settling (Type I & Type II only)-Coagulation- Mixing-Flocculation, Design of Sedimentation tanks (circular and rectangular)-Clariflocculators	7
IV	Filtration-Types of filters- Working and Design of Rapid and Slow sand filters. Loss of head in filters, Pressure filters	7
V	Disinfection of water - Methods, Chlorination-Types, Factors affecting - Chlorine demands. Miscellaneous treatment-Ion exchange, Lime- soda process, Electro dialysis - Colour, Taste and Odour removal- Adsorption-Aeration-Fluoridation-Defluoridation	7
VI	Lay out of water distribution network-Methods of distribution-Hardy cross method-Equivalent pipe method-Pipe appurtenances.	8
TOTAL	HOURS	42

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	B.C Punmia, "Water Supply Engineering", Laxmi Publications Pvt. Ltd., 2014
T2	G S Birdie, Water Supply and Engineering, Dhanapat Rai Publishing Company,
	2014
T3	Peavy H S, Rowe, D.R. Tchobanaglous "Environmental Engineering" Mc
	GrawHill Education, 1984
T4	S.K.Garg, "Water Supply Engineering", Khanna Publishers. 2010
T5	P.N. Modi, "Water Supply Engineering", Standard Book House, NewDelhi

T/R	BOOK TITLE/AUTHORS/PUBLICATION
R1	Metcalf & Eddy , "Waste Water Engineering", Tata Mc Grawhill Publishing Co
	Ltd, 2003
R2	K N Dugal, Elements of Environmental Engineering, S Chand and Company Pvt
	Ltd, 2007
R3	Subhash Verma, Varinder Kanwar, Siby John, Water supply Engineering, Vikash
	Publishing, 2015
R4	Mackenzie L Davis, Introduction to Environmental Engineering, McGrawhill
	Education (India), 2012

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEMESTER
CE203	Fluid Mechanics- I	Basic knowledge of pipe flow	S3
		and Bernoulli's Equation	
CY100	Engineering Chemistry	Basic concepts of chemical	S1
		reactions and mass balance	

COURSE OBJECTIVES:

1	To study the significance of water resources and the factors affecting quantity and
	quality of water
2	To study the various types of techniques adopted for a public water supply
	system

COURSE OUTCOMES:

Sl No.	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
	Understand the importance of water treatment and the operations and											
1	proce	esses ir	ivolve	ł								
	М											
	Analy	vse wat	er qua	lity an	d sugg	est tre	atmen	t meth	ods to	increase	e the qua	ality of
2	it											
			М	Н								
3	Solve	Solve the water demand of a city by using population forcasting methods										
5	Н		М									
4	Design sedimentation and coagulation tank											
4			М									
5	Desig	n Rapi	d and	Slow S	and Fil	ter						
5			М									
6	Analy	vse and	l Desig	n wate	er Netw	vork sy	rstem f	or a cit	y			
0	Н		М									

JUSTIFICATION FOR CO-PO MAPPING:

CO	PO	MAPPING	JUSTIFICATION
C01	P01	MEDIUM	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to find the solution for water independence for an entire city
	PO3	MEDIUM	The students will be able to analyse the water quality of a surface or ground water body and develop strategies for improving them in concern with the public health/ environmental concerns
CO2	PO4	HIGH	The students will be able to use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid treatment methods to complex pollution scenarios
C03	PO1	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to solve the total amount of water needed for a city by population forecasting
	P03	MEDIUM	The students will be able to design the water demand of a city in such a way that it will cater all the environmental/ public health needs
CO4	PO3	HIGH	The students will be able to design individual treatment units in concern with the environment
C05	PO3	LOW	The students will be able to initiate the design solutions for rapid and slow sand filters in such a way that it will be cost effective and efficient
C06	PO1	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to analyse and solve the complex water network system for a community/city
	P03	MEDIUM	The students will be able to design water network system by analysing the layout of the city and available water sources

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl No	DESCRIPTION	PROPOSED ACTIONS
1	Methods of Sampling for analysis	Environmental Laboratory
2	Advanced methods in water treatment	Assignment

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl No	DESCRIPTION
1	Sampling for the analysis of water as per IS 3025- part 1
2	Technological advancement in the field of water treatment

WEB SOURCE REFERENCES:

Sl No	DESCRIPTION
1	www.nptel.ac.in
2	https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-85-
	water-and-wastewater-treatment-engineering-spring-2006

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	\checkmark	STUD. ASSIGNMENT	\checkmark	WEB RESOURCES	
LCD/SMART BOARDS		STUD. SEMINARS		ADD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	\checkmark	STUD. SEMINARS	TESTS/MODEL EXAMS	\checkmark	UNIV. EXAMINATION	\checkmark
STUD. LAB PRACTICES		STUD. VIVA	MINI/MAJOR PROJECTS		CERTIFICATIONS	
ADD-ON COURSES		OTHERS				

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	\checkmark	STUDENT FEEDBACK ON FACULTY (TWICE)	<
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS		OTHERS	

Prepared by Arun B Approved by Dr.Aysha Zeneeb Majeed

COURSE PLAN

HOUR	MODULE	TOPICS PLANNED					
HOUR 1		Introduction to Environmental Engineering					
HOUR 2		Sources of Water, Water demand					
		Quantification of water demand through population					
HOUR 3		forecasting					
	4	Quantification of water demand through population					
HOUR 4	1	forecasting					
		Quantification of water demand through population					
HOUR 5		forecasting					
HOUR 6		Factors affecting consumption					
HOUR 7		Fluctuations in demand					
HOUR 8		Types of intakes					
HOUR 9		Conveyors, pumps and location of pumping station					
HOUR 10	2	Quality of water - Drinking water standards					
HOUR 11	Z	Physical, chemical and biological analysis					
HOUR 12		Physical, chemical and biological analysis					
HOUR 13		Physical, chemical and biological analysis					
HOUR 14		Treatment of water- An Introduction					
HOUR 15		Theory and principles of Sedimentation tanks- Stoke's law					
HOUR 16		Theory and principles of Sedimentation tanks- Stoke's law					
HOUR 17	3	Coagulation-Mixing-Flocculation					
HOUR 18		Design of Sedimentation tanks (circular and rectangular)					
HOUR 19		Design of Sedimentation tanks (circular and rectangular)					
HOUR 20		Design of Sedimentation tanks- Clariflocculators					
HOUR 21		Filtration-Types of filters					
HOUR 22		Working and Design of Rapid sand filters					
HOUR 23		Working and Design of Rapid sand filters					
HOUR 24	4	Working and Design of slow sand filters					
HOUR 25		Working and Design of slow sand filters					
HOUR 26		Loss of head in filters, Pressure filters					
HOUR 27		Loss of head in filters, Pressure filters					
HOUR 28		Disinfection of water - Methods					
HOUR 29		Chlorination-Types, Factors affecting - Chlorine demands					
HOUR 30		Miscellaneous treatment-Ion exchange, Lime-soda process,					
HOUR 31	5	Electro dialysis , Taste and Odour removal-Adsorption					
HOUR 32	5	Taste and Odour removal-Adsorption					
HOUR 33		Aeration-Fluoridation-Defluoridation					
HOUR 34		A brief overview on Module 1 to 4					
HOUR 35		Lay out of water distribution network-Methods of distribution					
HOUR 36		Lay out of water distribution network-Methods of distribution					
HOUR 37		Hardy cross method					
HOUR 38	6	Hardy cross method					
HOUR 39	0	Equivalent pipe method					
HOUR 40		Equivalent pipe method					
HOUR 41		Pipe appurtenances					

HOUR 42	Pipe appurtenances
HOUR 43	Question paper discussion

ASSIGNMENT – I

All questions are compulsory

- 1. What is meant by per capita water demand and factors affecting per capita demand?
- 2. List out all the methods for calculating the fire demand and find out the fire demand for the population of 3.3 lakh.
- 3. Explain in detail about the variations in demand.
- 4. What is meant by coincidental draft? How is it used in the design of water distribution system?
- 5. Explain in detail about the physical characteristics of water.
- 6. What are the different kinds of water demand?
- 7. What are the effects of variations in demand on the design capacities of different components of a water supply system?
- 8. List out different population forecasting methods and explain about any two.
- The population of a town during four decades in 1960, 1970, 1980 and 1990 are 39500, 48000, 60000 and 69000 respectively. Predicts its population in the year 2010 by geometric increase method and incremental increase method.
- 10. What are indicator organisms? What are the requirements of an ideal indicator organism?
- 11. What are water borne diseases? How can they be controlled? List any three water borne diseases and their causative organisms?
- 12. What is the standard for microbial quality of drinking water as per IS 10500:2012? Write the procedure for the confirmatory test for fecal coliforms.
- 13. Explain about diurnal variation in water demand?
- 14. Define turbidity and its measurement in laboratory?

ASSIGNMENT – II

All questions are compulsory

- 1. Explain of different types of pumps and their working principles
- 2. What are the chemical parameters in water quality analysis, list out their desirable and permissible limits as per IS 10500: 2012 and WHO Standards.
- 3. Draw a flow diagram indicating the various units in a typical drinking water treatment plant?
- 4. How is the purpose of aeration different from ground water and surface water? Explain with sketch the working of a cascade aerator?
- 5. Explain MPN test for the bacteriological analysis of water.
- 6. Water is supplied at a rate of 260 lpcd for a community having a population of 0.5 lakhs Design suitable filter beds (number of beds and area of each bed) if
 - a. Slow sand gravity filter is employed for treatment
 - b. Rapid sand gravity filter is employed for treatment.
- 7. Assume characteristic filtration rates for each and mention it explicitly. Further compare the above two methods of filtration highlighting the suitability of each other under various circumstances

QUESTION BANK

Module I

- 1. List four factors affecting per capita water demand.
- 2. What are the components of a water supply system?
- 3. What is the objective of water supply system?
- 4. What is the significance of Nitrite and fluoride in water?
- 5. Define Design period.
- 6. Define the term potable water.
- 7. State the causes for water pollution.
- 8. Write the advantage of sub-surface sources
- 9. What are the uses of nomograms?
- 10. State the effects when each of the following substances exceeds the prescribed limits in a water sample. (a) Nitrates (b) fluorides.
- 11. Define per capita demand".
- 12. List out different methods for population prediction

Module II

- 1. What are the causes for pollution of surface and subsurface sources of water? State the measures to be adopted to prevent pollution of water.
- 2. Write in detail about "Water Pollution" in India.
- 3. Explain in detail about the "Reasons for the analysis of water"
- 4. What are the requirements of potable water for domestic use?
- 5. Discuss the various Physical, Chemical and Biological characteristics of water.
- 6. Name the various methods of population forecast and explain the circumstances under which it is applicable.
- 7. Explain the different sources of water and their characteristics with respect to turbidity, hardness, chloride and microbiology.
- 8. Explain the different methods of population forecasting.
- 9. Explain the significance of different water quality parameters

Module III

- 1. Differentiate between type 1 and type 2 sedimentation
- 2. What are the design considerations used while designing a sedimentation tank
- 3. Explain the process of coagulation and list out important coagulants
- 4. Design of sedimentation tank/ Clariflocculators

Module IV

- 1. How filtration helps in water treatment
- 2. Differentiate between slow and rapid sand filters

- 3. What are the design criteria's for slow and rapid sand filters
- 4. List out the important uses of pressure filter

Module V

- 1. What are the different methods for disinfection of water
- 2. Explain the process of chlorination
- 3. List out various factors affecting chlorination
- 4. Briefly explain the treatment required for colour, odour and taste removal
- 5. How can we perform fluoridation and defluridation in a water treatment plant

Module VI

- 1. What are the different methods employed in designing the layout of a treatment network
- 2. Explain Hardy- Cross method and Equivalent pipe method
- 3. List out the important appurtenances used in a water treatment network

CE 407 TRANSPORTATION ENGINEERING II

D

COURSE INFORMATION SHEET

PROGRAMME: CE	DEGREE: BTECH
COURSE: TRANSPORTATION ENGINEERING II	SEMESTER: S7
	L-T-P-CREDITS: 3-0-0-3
COURSE CODE: CE407	COURSE TYPE: CORE
REGULATION: 2016	COURSE I IPE: CORE
COURSE AREA/DOMAIN: CIVIL ENGINEERING	CONTACT HOURS : 3 hours/Week.
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: NIL
ANY): NIL	LAD COURSE NAME: NIL

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	Introduction: Transportation modes - comparison and characteristics of highway and railway. Modem developments - Surface, elevated and tube railways, light rail transit, high speed tracks - technologies	7
II	Railway track: Alignment- basic requirements and factors affecting selection, Component parts of a railway track - requirements and functions - Typical cross section - Rails - functions and requirements, Type of rail sections, rail fastenings, wear and creep of rails - coning of wheels, Train resistances and evaluation of hauling capacity and tractive effort of locomotive. Geometric design of railway track: Horizontal curves, radius - super elevation ¬cant deficiency - transition curves - gradients - different types - Compensation of gradients.	7
III	Railway operation and control: Points and Crossings - Design features of a turn out - Details of station yards and marshalling yards - Signaling, interlocking of signals and points Principles of track circuiting Control systems of train movements - ATC, CTC - track circuiting	6
IV	Maintenance:- Introduction to track maintenance, Items of track maintenance, packing and over hauling, screening Railway accidents: Human and system contribution to catastrophic accidents, Human Factors in Transport Safety.	6
v	Tunnel Engineering: Tunnel sections classification tunnel surveying alignment, transferring centre, grade into tunnel - tunnel driving procedure shield method of tunneling, compressed air method, tunnel boring machine, Tunnel lining, ventilation - lighting and drainage of tunnels	8
VI	 Harbour Engineering: Harbours - classification, features, requirements, winds and waves in the location and design of harbours. Break waters necessity and functions, classification, alignment, design principles, forces acting on break water - construction, general study of quays, piers, wharves, jetties, transit sheds and warehouses navigational aids light houses, signals types Moorings 	8

UNIT	DETAILS	HOURS
	Dock Engineering: Docks - Functions and types - dry docks, wet docks - form and arrangement of basins and docks - design and construction - dock entrances - floating dry docks, slip ways, dock entrances and caissons. Dredging - functions - general study of dipper dredger, grapple dredger, ladder dredger and hydraulic dredger.	
TOTAL	HOURS	42

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	Rao G. V, Principles of Transportation and Highway Engineering, Tata McGraw Hill
T2	Mundrey J. S, Railway Track Engineering, Tata McGraw Hill
Т3	S.C. Rangawala, Railway Engineering, Charotor Publishing House
T4	S. C Saxena and S. P Arora., Railway Engineering, Dhanpat rai & Sons
T5	Subhash C. Saxena, Railway Engineering, Dhanpat rai & Sons
T6	R Srinivasan, Barbour, Dock & Tunnel Engineering, Charotor Publishing House
Τ7	S.P.Bindra, A course in docks and Barbour Engineering, Dhanpat rai & Sons

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEMESTER
BE100	ENGINEERING	BASIC CONCEPT OF FORCES	S1S2
	MECHANICS	AND THEIR APPLICATION	
CE207	SURVEYING	CONCEPT OF CURVES	S3

COURSE OBJECTIVES:

1	To set a solid and firm foundation in Railway engineering, including the history
	development, modern trends, maintenance, geometric design and safety of
	railways.
2	To introduce dock, harbour and tunneling

COURSE OUTCOMES:

Sl No.	P01	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	P010	P011	P012
1	The students will be able to explain the geometric parameters of a railway trac									y track		
L	Н	М										
2	The students will be able to compare different modes of transportation											
2	Н	L										
3	The students will be able to design a turnout											
5	Н	М	L									
	The students will be able to describe various safety issues in railway											
4	engin	eering										
	Н	М										

Sl No.	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	P010	P011	P012
5	The students will be able to describe various tunnel driving procedures											
5	Н	М										
6	The students will be able to explain various navigational aids											
0	Н	L										
7	The s	The students will be able to explain the functions of docks										
/	Н	L										

JUSTIFICATION FOR CO-PO MAPPING:

CO	PO	MAPPING	JUSTIFICATION		
	P01		The students will be able to apply the knowledge of		
		HIGH	engineering fundamentals to the solution of complex		
			transportation engineering problems		
C01	000	MEDUIM	The students will be able to identify, formulate and analyse		
	PO2	MEDIUM	of transportation problems using principles of engineering		
			sciences		
	P03	LOW	The students will be able to apply the knowledge to assess		
			transportation engineering problems		
	D 01		The students will be able to apply the knowledge of		
	P01	HIGH	engineering fundamentals to the solution of complex		
			transportation engineering problems		
C02			The students will be able to identify, formulate and analyse		
	PO2	MEDIUM	of transportation problems using principles of engineering		
			sciences		
	PO3	LOW	The students will be able to apply the knowledge to assess		
			transportation engineering problems		
	P01	O1 HIGH	The students will be able to apply the knowledge of		
			engineering fundamentals to the solution of complex		
			transportation engineering problems		
C03	PO2		The students will be able to identify, formulate and analyse		
		PO2	MEDIUM	of transportation problems using principles of engineering	
	P03	LOW	The students will be able to apply the knowledge to assess		
	100	1011	transportation engineering problems		
			The students will be able to apply the knowledge of		
	P01	HIGH	engineering fundamentals to the solution of complex		
C04			transportation engineering problems		
	PO2		The students will be able to identify, formulate and analyse		
		MEDIUM	of transportation problems using principles of engineering		
			sciences		

CO	РО	MAPPING	JUSTIFICATION			
	P03	LOW	The students will be able to apply the knowledge to assess			
	PU3	LUW	transportation engineering problems			
			The students will be able to apply the knowledge of			
	P01	HIGH	engineering fundamentals to the solution of complex			
			transportation engineering problems			
C05			The students will be able to identify, formulate and analyse			
005	P02	MEDIUM	of transportation problems using principles of engineering			
			sciences			
	P03	LOW	The students will be able to apply the knowledge to assess			
	105	LOW	transportation engineering problems			
			The students will be able to apply the knowledge of			
	P01	HIGH	engineering fundamentals to the solution of complex			
			transportation engineering problems			
C06	PO2	2 MEDIUM	The students will be able to identify, formulate and analyse			
000			of transportation problems using principles of engineering			
			sciences			
	P03	LOW	The students will be able to apply the knowledge to assess			
	105	PU3	P03	103		transportation engineering problems
			The students will be able to apply the knowledge of			
	P01	HIGH	engineering fundamentals to the solution of complex			
			transportation engineering problems			
C07			The students will be able to identify, formulate and analyse			
07	P02	PO2 MEDIUM	of transportation problems using principles of engineering			
			sciences			
	P03	LOW	The students will be able to apply the knowledge to assess			
	103	LUW	transportation engineering problems			

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl No	DESCRIPTION	PROPOSED ACTIONS	
1	DIFFERENT TYPES OF CONTROL SYSTEMS OF	Seminars, NPTEL,	
	TRAIN MOVEMENTS	Industrial visit	
2	TYPES OF TUNNEL DRIVING PROCEDURE	Seminars, NPTEL	

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl No	DESCRIPTION
1	Welding of rails
2	Sleeper design

WEB SOURCE REFERENCES:

Sl No	DESCRIPTION
1	www.nptel.ac.in

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	\checkmark	STUD. ASSIGNMENT	\checkmark	WEB RESOURCES	
LCD/SMART BOARDS		STUD. SEMINARS		ADD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	\checkmark	STUD. SEMINARS	TESTS/MODEL EXAMS	\checkmark	UNIV. EXAMINATION	\checkmark
STUD. LAB PRACTICES		STUD. VIVA	MINI/MAJOR PROJECTS		CERTIFICATIONS	
ADD-ON COURSES		OTHERS				

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	\checkmark	STUDENT FEEDBACK ON FACULTY (TWICE)	\checkmark
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS		OTHERS	

Prepared by Arun T Moonjely Approved by Dr.Aysha Zeneeb Majeed

COURSE PLAN

HOUR	MODULE	TOPICS PLANNED
	_	Introduction: Transportation modes - comparison and
HOUR 1		characteristics of highway and railway.
	1	Modern developments – Surface, elevated and tube railways,
HOUR 2		light rail transit, high speed tracks - technologies
		Railway track: Alignment- basic requirements and factors
HOUR 3		affecting selection,
		Component parts of a railway track - requirements and
HOUR 4		functions
		Component parts of a railway track - requirements and
HOUR 5		functions
HOUR 6		Typical cross section - Rails – functions and requirements
HOUR 7		Type of rail sections, rail fastenings, wear and creep of rails
HOUR 8		Type of rail sections, rail fastenings, wear and creep of rails
HOUR 9		Type of rail sections, rail fastenings, wear and creep of rails
HOUR 10	2	coning of wheels,
HOUR 11		Train resistances and evaluation of hauling capacity and
HOUK II		tractive effort of locomotive.
HOUR 12		Train resistances and evaluation of hauling capacity and
11001 12		tractive effort of locomotive.
HOUR 13		Geometric design of railway track: Horizontal curves, radius –
1000 15		super elevation - cant deficiency
HOUR 14		transition curves - gradients - different types - Compensation of
nookii		gradients.
HOUR 15		transition curves - gradients - different types - Compensation of
		gradients.
HOUR 16		Points and Crossings – Design features of a turnout
HOUR 17		Details of station yards and marshalling yards
HOUR 18		Signaling, interlocking of
		signals and points
HOUR 19		Signaling, interlocking of
		signals and points
HOUR 20		Signaling, interlocking of
	3	signals and points
HOUR 21		Principles of track circuiting -Control systems of train
		movements – ATC, CTC – track circuiting Principles of track circuiting -Control systems of train
HOUR 22		movements – ATC, CTC – track circuiting
		Principles of track circuiting -Control systems of train
HOUR 23		movements – ATC, CTC – track circuiting
		Principles of track circuiting -Control systems of train
HOUR 24		movements – ATC, CTC – track circuiting
HOUR 25		Maintenance:- Introduction to track maintenance
	4	Items of track maintenance, packing and over hauling,
HOUR 26	4	screening
	J	SUEEIIIIg

HOUR 27		Railway accidents: Human and system contribution to							
		catastrophic accidents,							
HOUR 28		Railway accidents: Human and system contribution to catastrophic accidents,							
HOUR 29		Factors in Transport Safety.							
HOUR 30		Factors in Transport Safety.							
		Tunnel Engineering: Tunnel - sections - classification - tunnel							
HOUR 31		surveying - alignment, transferring centre, grade into tunnel							
HOUR 32		Tunnel Engineering: Tunnel - sections - classification - tunnel							
HOUK 52		surveying - alignment, transferring centre, grade into tunnel							
		Tunnel Engineering: Tunnel - sections - classification - tunnel							
HOUR 33	5	surveying - alignment, transferring centre, grade into tunnel							
	5	tunnel driving procedure - shield method of tunneling,							
HOUR 34		compressed air method, tunnel boring machine, Tunnel lining,							
		ventilation - lighting and drainage of tunnels							
		tunnel driving procedure - shield method of tunneling,							
HOUR 35		compressed air method, tunnel boring machine,Tunnel lining,							
		ventilation - lighting and drainage of tunnels							
		Harbours– classification, features, requirements, winds and							
HOUR 36		waves in the location and design of harbours							
		Harbours– classification, features, requirements, winds and							
HOUR 37		waves in the location and design of harbours.							
noono,									
HOUR 38		Break waters - necessity and functions, classification,							
HOUR 39		alignment, design principles, forces acting on break water							
noonoy		construction, general study of quays, piers, wharves, jetties,							
HOUR 40	6	transit sheds and warehouses - navigational aids - light houses,							
noon io		signals - types - Moorings							
		Dock Engineering: Docks - Functions and types - dry docks, wet							
HOUR 41		docks – formand arrangement of basins and docks							
		Dredging – functions -general study of dipper dredger, grapple							
HOUR 42		dredger, ladder dredger and hydraulic dredger.							
		design and construction – dock entrances - floating dry docks,							
HOUR 43		slip ways, dock entrances and caissons.							
		ן אוף ways, uock entrances and caissons.							

ASSIGNMENT – I

1. Describe the Modem developments in railway engineering (Surface, elevated and tube railways, light rail transit, high speed tracks – technologies)

ASSIGNMENT – II

- 1. Write about various train accidents and its causes occurred in India
- 2. Briefly describe the different navigational aids in harbor engineering

UNIT WISE QUESTION BANK

UNIT 1

- 1. Enumerate the advantages and disadvantages of railway transport over other modes of transport facilities
- 2. Discuss about the new technologies in railway engineering
- 3. What do you mean by light rail transit system?
- 4. Compare surface, elevated and tube railways
- 5. What do you mean by high speed tracks?

UNIT 2

- 1. Discuss the requirement of good rail alignment
- 2. With a neat sketch, explain the different components of a railway track
- 3. Explain the choice of a railway gauge in a particular location
- 4. What are the causes for the wear of rails?
- 5. With a neat sketch explain the effect of coning of wheels on rail fixing
- 6. What is creep? Discuss the theories propounded for the probable causes of creep.
- 7. Find out the number of sleepers required for constructing a B.G track 963metres long, adopting sleeper density as n+6
- 8. Determine the length of the transition curve for a B.G track with the design speed on the curve equal to 90kmph, permissible cant on B.G track is 16.5cm and the cant deficiency is 7.6cm
- 9. Design the length of transition curve given that the designed speed of the curve is 110kmph on B.G track
- 10. Define the equilibrium speed and cant deficiency.

UNIT 3

- 1. Draw a neat sketch of right hand turn out
- 2. On a straight B.G track, a turnout takes off at an angle of $6^{\circ}42'35"$. Design the turnout for the following data: Angle of the switch = $1^{\circ}34'27"$
- Heel divergence = 13.65cm
- 3. What are the requirements of a good marshalling yard?
- 4. Compare the advantages and disadvantages of the C.T.C and A.T.C systems of train movement control
- 5. By means of a neat sketch, explain the switch fittings for mechanical interlocking
- 6. Explain route relay system
- 7. How are signals classified? Mention the functions of each signals

UNIT 4

- 1. Describe the realignment of straight tracks
- 2. Explain the salient features, advantages and disadvantages of measures shovel packing method of maintaining railway track
- 3. A portion of the track is washed away during floods. What are the emergency measures adopted under such circumstances

- 4. What are the special measures to be taken for maintaining the high speed railway track?
- 5. Describe the maintenance of points and crossings

UNIT 5

- 1. What are the classifications of tunnels?
- 2. Write short on tunnel surveying
- 3. Explain shield method of tunneling
- 4. Briefly explain compressed air method
- 5. Write short on tunnel boring machine
- 6. Explain tunnel ventilation

UNIT 6

- 1. What are the classifications of harbours?
- 2. Briefly explain the effects of winds and waves in the location and design of harbours
- 3. What are the functions of breakwaters?
- 4. What are the design principles of breakwater?
- 5. Write short notes on
 - a. Quays
 - b. Piers
 - c. Wharves
 - d. Jetties
 - e. Light house
- 6. Explain dry docks and wet docks

CE 409 QUANTITY SURVEYING & VALUATION

E

COURSE INFORMATION SHEET

PROGRAMME: CE	DEGREE: BTECH	
COURSE: QUANTITY SURVEYING AND	SEMESTER: S7	
VALUATION	L-T-P-CREDITS: 3-0-0-3	
COURSE CODE: CE409	COURSE TYPE. CODE	
REGULATION: 2016	COURSE TYPE: CORE	
COURSE AREA/DOMAIN: CIVIL	CONTACT HOURS : 4 hours/Week.	
ENGINEERING	CONTACT HOOKS. 4 Hours, week.	
CORRESPONDING LAB COURSE CODE	LAB COURSE NAME: COMPUTER	
(IF ANY): CE 334	AIDED CIVIL ENGG. LAB	

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	General Introduction- Quantity Surveying- Basic principles-Types of Estimates - Specifications- purposes and basic principles-general specifications - Detailed specifications-Method of measurement of various items of work. Analysis of rates- Introduction to the use of CPWD data book and schedule of rates- conveyance and conveyance statement - Miscellaneous charges.	6
II	Preparation of data and analysis of rates for various items of work connected with building construction and other civil engineering structures with reference to Indian Standard Specification.	6
III	Detailed estimate including quantities, abstract and preparation of various items of works- buildings- center line method and long wall short wall method- sanitary and water supply works- soak pits, septic tanks, overhead tanks, culverts, Retaining walls, road construction. Bar-bending schedule-preparation of bar-bending schedule for RCC works connected with building construction, culverts and minor irrigation works.	18
IV	Valuation - Explanation of terms, types of values, sinking fund, years purchase, Depreciation - Straight line method, constant percentage method, S.F method .Obsolescence. Valuation of real properties-rental method, profit based method, depreciation method. Valuation of landed properties -belting method, development method, hypothecated building scheme method. Rent calculation. Lease and Lease hold property.	12
TOTA	LHOURS	42

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	B N Dutta, Estimating and costing in Civil Engineering, USB publishers and
	distributers Ltd. New Delhi
T2	D D Kohli, RC Kohli, A textbook of Estimating and costing, S Chand Publishing, 2011

T/R	BOOK TITLE/AUTHORS/PUBLICATION							
Т3	Dr. S. Seetharaman, M. Chinnasamy, Estimation and Quantity Surveying,							
	Anuradha							
	Publications , Chennai.							
R1	BS Patil, Civil Engineering contracts and estimates, Universities press							
R2	V N Vazirani & S P Chandola, Civil engineering Estimating and Costing, Khanna							
	Publishers.							
R3	IS 1200-1968; Methods of measurement of Building & Civil Engineering works.							
R4	CPWD data book and schedule of rates.							

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEMESTER
		Drafting of Plan, section and	
CE334	Computer Aided Civil	elevation of buildings, structural	6
CE354	Engg. Lab	detailing of beams, columns, slabs in	0
		AutoCAD	

COURSE OBJECTIVES:

1	To have an awareness regarding specifications, analysis of rates, valuation etc. in
	connection with construction
2	To prepare detailed estimates, bar bending schedules of various items of work

COURSE OUTCOMES:

Sl No.	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
	Students will be able to identify the quality and quantity of materials, quantity											
1	and classes of skilled and unskilled labours and tools and plants required for							for				
1	the p	roject.										
		М										
	Stude	ents wi	ll be ab	le to a	nalyse	the rat	e of ite	ems of	work b	y worki	ing out t	he
2	quantities of different materials and labours required for execution of various						ious					
	items	of wor	∵k.									
			Н									
	Students will be able to estimate the quantities, prepare abstract for various							ous				
	items of works- buildings, septic tanks, culverts, roads etc. by drawing up											
3	specifications, bar bending schedule and also prepare the schedule of											
	progr	ammir	ng of th	e proje	ect							
			Н									
	Stude	ents wi	ll be ab	le to e	valuate	e the va	alue of	real ar	nd land	ed prop	erty an	d rent
4	of lea	se hold	l prope	erty								
				Н								

JUSTIFICATION FOR CO-PO MAPPING:

CO	PO	MAPPING	JUSTIFICATION
			For carrying out a civil engineering project, quality and
C01	P02	MEDIUM	quantity of materials and classes of skilled and un skilled
			labours and tools and plants etc. to be identified.
			Exact quantities of items of work and quantities of different
C02	PO3	HIGH	materials required for various items of work is essential for
602	105	man	the execution of the civil engineering project without
			wastage of resources
			Estimate report is essential to meet a number of
			requirements and also to have a clear picture of the project
C03	P03	HIGH	expenditure and to decide upon how and whether to carry
605	r03	пібп	out the project and preparation of the schedule of
			programming of the project for the execution of the civil
			engineering project without wastage of resources
C04	P04	HIGH	Proper analysis and interpretation of the data is essential to
C04	r 04	пібп	prepare valuation report of real and landed property.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl No	DESCRIPTION	PROPOSED ACTIONS
1	Tenders and contracts	Assignment 2

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl No	DESCRIPTION
1	Report generation – Report on estimate of residential building, culvert roads
	etc.

WEB SOURCE REFERENCES:

Sl No	DESCRIPTION
1	www.nptel.ac.in

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	\checkmark	STUD. ASSIGNMENT	\checkmark	WEB RESOURCES	
LCD/SMART		STUD. SEMINARS		ADD-ON COURSES	
BOARDS		STOD. SEMINARS			

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	\checkmark	STUD. SEMINARS	TESTS/MODEL EXAMS	\checkmark	UNIV. EXAMINATION	\checkmark
STUD. LAB		STUD.	MINI/MAJOR		CERTIFICATIONS	
PRACTICES		VIVA	PROJECTS		CERTIFICATIONS	

ADD-ON COURSES	OTHERS		
-------------------	--------	--	--

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	\checkmark	STUDENT FEEDBACK ON FACULTY (TWICE)	\checkmark
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS		OTHERS	

Prepared by Tressa Kurian Approved by Dr. Aysha Zeneeb Majeed

COURSE PLAN

HOUR	MODULE	TOPICS PLANNED
HOUR 1		General Introduction- Quantity Surveying- Basic principles
HOUR 2	- 1	Types of Estimates
HOUR 3		Specifications- purposes and basic principles-general specifications
HOUR 4		Detailed specifications-Method of measurement of various items f work.
HOUR 5		Detailed specifications-Method of measurement of various items of work.
HOUR 6		Analysis of rates- Introduction to the use of CPWD data book and schedule of rates
HOUR 7		Conveyance and conveyance statement -Miscellaneous charges.
HOUR 8	2	Preparation of data and analysis of rates for various items of work connected with building construction and other civil engineering structures with reference to Indian Standard Specification.
HOUR 9		Preparation of data and analysis of rates for various items of work connected with building construction and other civil engineering structures with reference to Indian Standard Specification.
HOUR 10		Preparation of data and analysis of rates for various items of work connected with building construction and other civil engineering structures with reference to Indian Standard Specification.
HOUR 11		Preparation of data and analysis of rates for various items of work connected with building construction with reference to Indian Standard Specification.
HOUR 12		Preparation of data and analysis of rates for various items of work connected with building construction with reference to Indian Standard Specification.
HOUR 13		Preparation of data and analysis of rates for various items of work connected with building construction and other civil engineering structures with reference to Indian Standard Specification.
HOUR 14		Preparation of data and analysis of rates for various items of work connected with building construction and other civil engineering structures with reference to Indian Standard Specification.
HOUR 15	3	Detailed estimate including quantities, abstract and preparation of various items of works- buildings- centre line method

HOUR 16		Detailed estimate including quantities, abstract and preparation of various items of works- buildings- centre line method
HOUR 17		Detailed estimate including quantities, abstract and preparation of various items of works- buildings- centre line method
HOUR 18		Detailed estimate including quantities, abstract and preparation of various items of works- buildings- long wall short wall method-
HOUR 19		Detailed estimate including quantities, abstract and preparation of various items of works- buildings- long wall short wall method
HOUR 20		Detailed estimate including quantities, abstract and preparation of various items of works- buildings- long wall short wall method
HOUR 21		Detailed estimate including quantities, abstract and preparation of various items of works- sanitary and water supply works
HOUR 22		Detailed estimate including quantities, abstract and preparation of various items of works- buildings- soak pits
HOUR 23		Detailed estimate including quantities, abstract and preparation of various items of works- septic tanks
HOUR 24		Detailed estimate including quantities, abstract and preparation of various items of works- buildings- overhead tanks
HOUR 25		Detailed estimate including quantities, abstract and preparation of various items of works- culverts
HOUR 26		Detailed estimate including quantities, abstract and preparation of various items of works- Retaining walls
HOUR 27		Detailed estimate including quantities, abstract and preparation of various items of works- road construction.
HOUR 28		Bar-bending schedule-preparation of bar-bending schedule for RCC works connected with building construction
HOUR 29		Bar-bending schedule-preparation of bar-bending schedule for RCC works connected with building construction
HOUR 30		Bar-bending schedule-preparation of bar-bending schedule for RCC works -culverts
HOUR 31		Bar-bending schedule-preparation of bar-bending schedule for RCC works -culverts
HOUR 32		Bar-bending schedule-preparation of bar-bending schedule for RCC works minor irrigation works.
HOUR 33		Valuation - Explanation of terms, types of values
HOUR 34		Valuation - sinking fund, years purchase
HOUR 35	4	Depreciation - Straight line method, constant percentage method
HOUR 36		Depreciation -S.F method Obsolescence.
HOUR 37		Valuation of real properties-rental method

HOUR 38	Valuation of real properties- profit based method
HOUR 39	Valuation of real properties -depreciation method.
HOUR 40	Valuation of landed properties -belting method
HOUR 41	Valuation of landed properties -development method
HOUR 42	Valuation of landed properties - hypothecated building scheme
	method.
HOUR 43	Rent calculation. Lease and Lease hold property.
HOUR 44	Rent calculation. Lease and Lease hold property.

ASSIGNMENT – I

1.

- a. Write down the detailed specification of Roofing with M.P tile.
- b. Work out unit rate for Plastering of ceiling with cement mortar 1:3, 9 mm thick. [For 10 m2, River Sand – 0.09 m3 @Rs. 1200/m3, Cement – 43Kg@ Rs 5000/t, Mason -0.9@ Rs. 450/E, Man -0.55@ Rs.350/E, Women 1.1 @ Rs.325/E]

2.

- a. Write down the detailed specification of reinforcement for R.C.C Work.
- b. Work out unit rate for brick work, in cm 1:6 using wire cut brick of size 22.9x11.2x7 cm. For foundation and basement [For 1 m3 ,brick 460 Nos @ Rs. 6000/1000 Nos ,Sand 0.2103 @ Rs 1200/m3 , Cement 48Kg @Rs 5000/t, mason 0.7 @Rs.450/E , man 0.35 @ Rs 350/E, women 0.7 @ Rs.325/E]
- 3. Write a detailed specification for the following items of work:
 - a. RCC 1:2:4 for roof slab
 - b. Foundation and basement in rubble masonry
 - c. Doors and windows in wood
 - d. Flooring using ceramic tiles
- 4.
- a. Give the detailed specification for plastering for wall with CM 1:3 mix 9mm thick.
- b. Give a detailed specification for 2.5cm cement concrete floor of 1:2:4 proportion.

To be submitted on September 6th, 2018

ASSIGNMENT – II

- 1. Calculate standard rent of a building with the following data:
 - a. Cost of land =Rs.8,00,000/-
 - b. Cost of building= Rs.5,00,000/-
 - c. Expected life of building = 60 years
 - d. Return expected = 6% on land, 9% on building
 - e. Annual repairs = @12% on the cost of building
 - f. Sinking fund =@30 of the return from building
- 2. Explain in detail about the preparation of tender notices and documents.
- 3. Explain the various types of contract system.
- 4. Discuss in detail about the report preparation for estimation of a residential building.

To be submitted on November 12th, 2018

TUTORIAL QUESTIONS TUTORIAL 1

- 1. Prepare a detailed estimate of quantity of the following item of a building given in the Figure-1.
 - a. Earth work excavation
 - b. Brick work for superstructures
 - c. Wood work for shuttering of doors
 - d. Wall Plastering
 - e. RCC work for Roof and Lintel
- 2. Prepare a detailed estimate of quantity of the following item of a building given in the Figure-1.
 - a. PCC 1:4:8 for foundation
 - b. Rubble masonry foundation and basement
 - c. Wood work for frame of door and windows
 - d. Wall painting

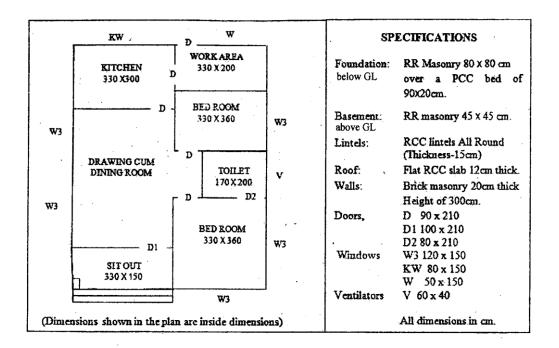
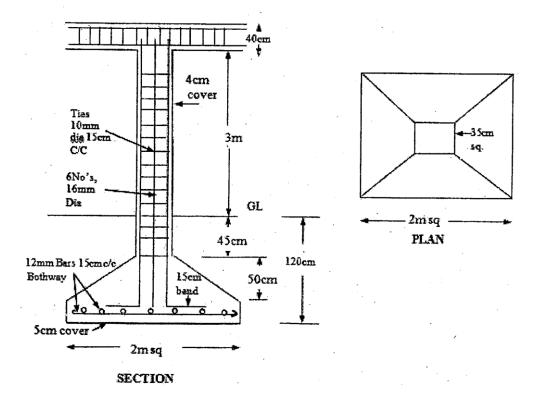



Figure - 1

TUTORIAL 2

1. Prepare bar bending schedule of a RCC column with foundation footing shown in the figure 2.

2.

- a. Explain the principles of valuation.
- b. A building costing Rs 4,50,000/- has recently been constructed in a big city. The plot measuring 450m2 was purchased @ Rs 1,500/m2 .Work out the rent of the property. Assume 7% as net return on the cost of construction and 4% in the land value. All expected outgoing are Rs 1,50,000/year.

UNIT WISE QUESTION BANK

Unit 1

- 1. Define analysis of rates.
- 2. Briefly explain about preliminary Estimate.
- 3. State the different types of specification.
- 4. Explain the general specification for first class buildings?
- 5. Explain the detailed specifications for any four items of work?
- 6. Explain the different types of estimates & differentiate detailed estimate from cube rate estimate?
- 7. Write note on
 - a. General or brief specification
 - b. Detailed specification
 - c. Standard specification
- 8. Write short notes on data book and schedule of rates.

9.

- a. Write the detailed specification for first class brick work used in residential building construction
- b. Work out the unit rate for the following work in m3 reinforced cement concrete M20 grade

Description	Quantity	unit	Rate Rs.	unit
20mm (nominal size) broken	0.900	m ³	1463.00	m ³
stone				
Sand	0.450	m ³	2238.00	m ³
Cement	0.360	Tonne	4934.00	Tonne
Mason	0.200	Nos	325.00	Each
Man	1.000	Nos	240.00	Each
Women	3.500	Nos	240.00	Each
Man for lifting materials	0.200	Nos	240.00	Each
Form work	7	m ²	3629.94	m ²

Unit 2

- 1. Estimate the quantities of brickwork and plastering required in a wall 4m long, 3m high and 30 cm thick. Calculate also the cost if the rate of brickwork is Rs.32.00 per cu.m and of plastering is Rs. 8.50 per sq.m.
- 2. Calculate the quality of brickwork in an arch over a 1.80m span opening. The arch is 40cm. thick and the breath of a wall is 40 cm.
- 3. Analyses the rate of cement concrete of ratio 1:2:4 and 1:3:6.
- 4. Write down the detailed specification for the following item : Damp proof course 2.5 cm thick, with CC 1 1.5 3.
- 5. What is the necessity of specifications for building materials and construction.
- 6. Work out the unit rate for the following work in m2 Painting two coats with approved quality plastic emulsion paint two coats.

Materials	Qty	Unit	Rate/Unit
Plastic emulsion paint including priming	1.150	Litre	180.00
coat			
Labour			
Painter	1.150	Each	270.00

- 7. Estimate the following items of works from the figure (Fig-1) given below?
 - a. Earth work excavation
 - b. PCC
 - c. Brickwork above & below Ground level
 - d. RCC work Beam, Slab

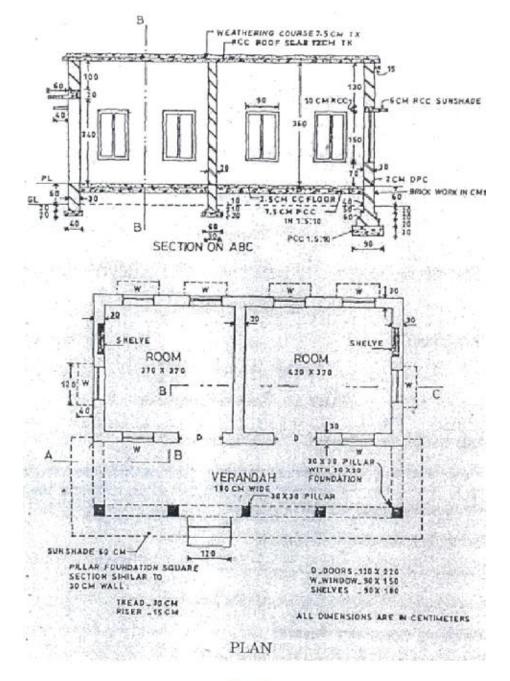
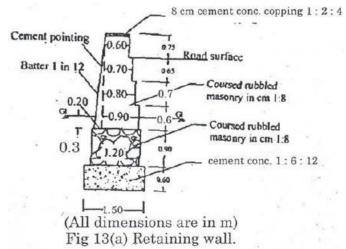
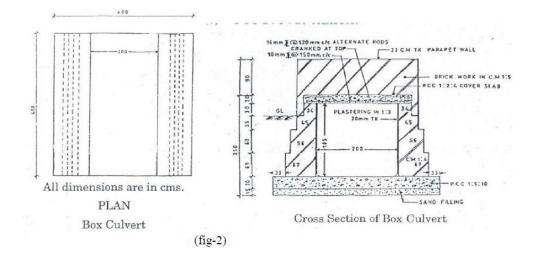
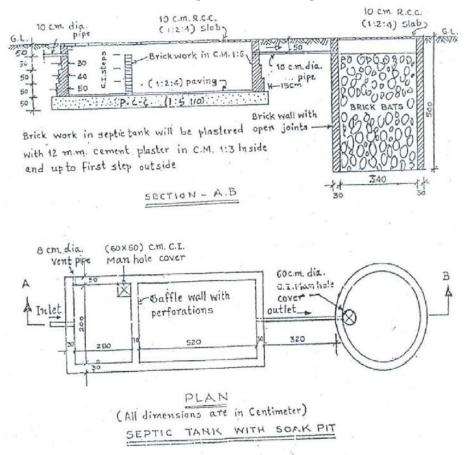



Fig-1

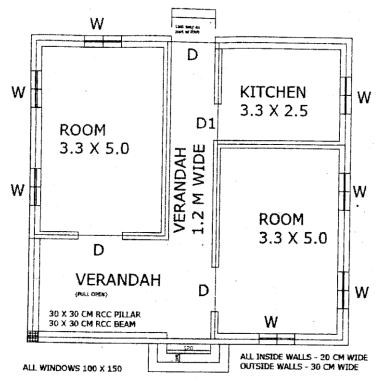

- 8. Estimate the following items of works from the figure (Fig-1).
 - a. Plastering
 - b. White washing & painting
- 9. Estimate the following items of works from the figure (Fig-1)
 - a. Shuttering work/form work
 - b. RCC work slab & column
- 10. Analyse the rate for the following items:
 - a. PCC 1:3:6 using 40 mm broken stone, 40 mm aggregate 0.95m3 @1100/m3, Sand 0.48m3@2500/m3, Cement 228kg@7500/t.
 - b. Rubble masonry in CM 1:6; Rubble 1m3 @900/m3, sand 0.3m3 @ Rs. 2,500/m3, Cement 72 kg @Rs. 7,500/t, Labour - 0.7 Mason @ Rs. 800 each, 0.35 Man @ Rs. 600 each, 0.70 Women @ Rs, 550 each. Unit 3

Unit 3

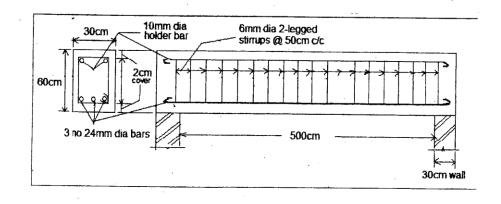

1. Estimate the retaining wall quantity?

- 2. Explain the following detailed estimate?
 - a. Long wall short wall method
 - b. Centre line method
- 3. Estimate the following quantity the figure of box culvert.
 - a. Brickwork above & below Ground level
 - b. RCC work
 - c. Earth work excavation
 - d. PCC

- 4. Estimate the following quantity from the figure of septic tank.
 - a. Internal Plastering
 - b. Brickwork in cm 1:6 in septic tank
 - c. RCC slab cover for septic tank & soak pit


- 5. Briefly explain bar bending schedule. State its uses.
- 6. Obtain the quantity for the following items for fig. 1 and also prepare an abstract of estimate with given rates .Assume suitable missing data.
 - a. Earth work excavation rate Rs. 350/m³.Excavation depth 0.9 m from ground level, width 0.9 m

- RRM in foundation and basement rate Rs. 8000/m³ RRM using cm 1:6, 70 cm width 80cm depth in foundation and basement 45 cm wide and 45 cm height except at front verandah column.
- c. Brick work-rate 6000/m³ Brick work using country burnt bricks and cm 1:4,20cm thick and 3 m height. Parapet 10cm wall 60cm height
- d. Cement Plastering exterior and interior Rs $300/m^2$
- e. RCC M20 used in all structural elements @ Rs 10,000/m³


All interior walls 20cm wide and exterior walls 30 cm wide .

Doors and windows D – 1.2 m x 2.1 m, D1 – 1.0 x 2.1 m; W – 1.0 x 1.5

Lintel – $0.23 \ge 0.15$ m provided over openings with 10cm projections sunshade 60 cm projecting all around with lintel support. Assume any missing data. Front veranda consists of RCC column 30cm ≥ 30 cm with 1.2 $\ge 1.2 \ge 0.5$ m footing size resting at 1.1 m from ground level. RCC Beam 30cm ≥ 30 cm.

- 7. Figure shows the longitudinal section and cross section of a simple beam of clear span 5.0m. The thickness of supporting wall is 30cm.
 - a. Work out the total quantity of cement concrete and steel reinforcement. (Tor Steel)
 - b. Prepare a detailed estimate of a septic tank for 20 users. Assume liquid capacity per user 0.09m³. Determine quantity for:
 - i. Earth work in excavation
 - ii. PCC 1:3:6
 - iii. Brick work in CM 1:6
 - iv. RCC work M20

- 1. A property fetches a net income of Rs.900.00 deducting all outgoings. Workout the capitalized value of the property if the rate of interest is 6% per annum.
- 2. An old building has been purchased by a person at a cost of Rs.30,000/- excluding the cost of the land. Calculate the amount of annual sinking fund at 4% interest assuming the future life of the building as 20 years and scarp value of the building as 10% of the cost of purchase.
- 3. The present value of a property is 20000/- Calculate the standard rent. The rate of interest may be assumed as 6%.
- 4. Write the various methods of depreciation. Define the Year's purchase
- 5. Explain the different method of valuation?
- 6. The capitalized cost of a building is Rs.one lac, including all fittings of first class construction. if the rate of interest is 6%, Calculate net return from the property. Assume out goings as 15% on gross income.
- Calculate the annual rent of a building with the following data. Cost of land = Rs.20000/-Cost of building = Rs.80000/-

Estimate life = 80years

Return expected = 5% on land 6% on building

Annual repairs are expected to be 0.7% of the cost construction and other out goings will be 25% of the gross rent. There is no proposal to set up a sinking fund.

- 8. A building is situated on ambala –Kalka road Rs. 38000/-considered its scrap value as 10% of the cost and life as 80years.Find out depreciated value if the the life of the building is 20 year.
- 9. A plot measure 500sq.m.the built up area rate of this 1st class building is Rs.600/per sq.m this rates includes cost of water supply, sanitary and electric installations. The age of the building is 40 years. The cost of the land is Rs.80/- per sq.m.

10.

a. A building costing Rs. 8,00,000/- has been constructed on a freehold land measuring 200 sqm recently in a big city. Prevailing rate of land in the neighbourhood is Rs. 250/-per sqm. Determine the net rent of the

property,

if the expenditure on an outgoing including sinking fund is Rs. 34,000/-per annum. Work out also the gross rent of the property per month.

- b. Explain how depreciation is building is worked out.
- 11.
- a. Calculate standard rent of a building with the following data: Cost of land - Rs 8,00,000/ Cost of building-Rs. 5,00,000/-Expected life of building - 60 years Annual repairs- @12% on the cost of building Sinking fund - @30 of the return from building.
- b. A real estate agent purchases a vacant land of extent 10 hectares at a cost of Rs. 300 per m2. He divides the land into building plots of 900 m2 area after leaving 25% of the land for roads, parks etc. Expenses for the development are at Rs. 1500 per m2 and technical charges at 8% of cost price, work out the selling price of each plot if the agent expects 20% profit for his investment.

CE 465 GEO-ENVIRONMENTAL ENGINEERING

F1

COURSE INFORMATION SHEET

PROGRAMME: CE	DEGREE: BTECH
COURSE: GEO-ENVIRONMENTAL	SEMESTER: S7
ENGINEERING	L-T-P-CREDITS: 3-0-0-3
COURSE CODE: CE465	COURSE TYPE: ELECTIVE
REGULATION: 2016	COURSE ITTE. ELECTIVE
COURSE AREA/DOMAIN: CIVIL	CONTACT HOURS: 3 hours/Week.
ENGINEERING	CONTACT HOOKS: 5 Hours/ week.
CORRESPONDING LAB COURSE CODE	LAB COURSE NAME: NIL
(IF ANY): NIL	LAD COURSE NAME: NIL

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	Introduction and Soil-water-environment interaction : Introduction to geoenvironmental Engineering, Soil-water-environment interaction relating to geotechnical problems, Waste:-source, classification and management of waste, Physical, chemical and geotechnical characterization of municipal solid waste, Impact of waste dump and its remediation	6
II	Geotechnical application of waste and disposal: Geotechnical use of different types such as Thermal power plant waste, MSW, mine waste, industrial waste. Waste disposal facilities, Parameters controlling the selection of site for sanitary and industrial landfill. Site characterization. MoEF guidelines.	7
III	Landfill Components :Landfill layout and capacity, components of landfill and its functions. Types and functions of liner and cover systems, Compacted clay liner, selection of soil for liner, methodology of construction.	6
IV	Leachate, Gas Management and Geosynthetics: Management of Leachate and gas. Various components of leachate collection and removal system and its design., gas disposal/utilization. Closure and post closure monitoring system Geosynthetics- Geo membranes - geosynthetics clay liners -testing and design aspects.	6
v	Soil remediation : Investigation of contaminated soil, sampling, assessment Transport of contaminants in saturated soil. Remediation of contaminated soil- in-situ / exit remediation, bio remediation, thermal remediation, pump and treat method, phyto remediation and electro-kinetic remediation	9
VI	Change in engineering properties due to change in environment. Variation in Engineering properties of soil –atterberg limit, shear strength, permeability and swelling due to change in environment/pore fluid.	8
TOTAL	HOURS	42

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	Daniel, D.E. (1993). Geotechnical Practice for Waste Disposal. Chapman, and
	Hall, London.
T2	Koerner, R.M. (2005). Designing with Geosynthetics. Fifth Edition. Prentice Hall,
	New Jersey.
T3	Reddi L.N and Inyang HI (2000) Geoenvironmental Engineering: Principles and
	Applications, Marcel Dekker Inc Publication
T4	R. N. Yong (2000) Geoenvironmental Engineering: Contaminated Soils,
	Pollutant Fate, Mitigation Lewis Publication.
T5	Dr. G V Rao and Dr. R S Sasidhar (2009) Solid waste Management and
	Engineered Landfills, Saimaster Geoenvironmental Services Pvt. Ltd.
	Publication.
T6	Ayyar TSR (2000) Soil engineering in relation to environment, LBS centre for
	Science and Technology, Trivandrum.
T7	Hari D. Sharma, Krishna R. Reddy (2004) Geoenvironmental Engineering: Site
	Remediation, Waste Containment, and Emerging Waste Management
	Technologies, Publisher: John Wiley & Sons Inc.
T8	Donald L. Wise, Debra J. Trantolo, Hilary I. Inyang, Edward J. Cichon (2000)
	Remediation Engineering of Contaminated Soils, Publisher: Marcel Dekker Inc.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEMESTER
CE 305	Geotechnical	Engineering properties of soil	S6
	Engineering II		

COURSE OBJECTIVES:

1	To create a awareness in the field of Geo-Environmental Engineering
2	To impart the knowledge on Geotechnical aspects in the disposal of waste
	materials and the remediation of contaminated sites
3	To familiarize about landfill and clay liner design
4	To create awareness about waste collection and design of removal systems
5	To impart the knowledge on soil remediation and investigation of contaminated
	soil
6	To create awareness about variation in properties of soil due to change in
	environment

COURSE OUTCOMES:

Sl No.	P01	P02	P03	PO4	P05	P06	P07	P08	P09	P010	P011	P012
	The students will be able to understand the basic concepts in geo											
1	environmental engineering and soil-water-environment interaction.											
	М	L										
	The s	tudent	s will t	e able	to ider	ntify di	fferent	types	of was	tes and	provide	a
2	soluti	on by	their g	eotech	nical aj	pplicat	ion.					
	Н	М	L				М		М			
	The s	tudent	s will t	e able	to und	erstan	d abou	t landf	ill and	to const	truct	
3	compacted clay liner											
	М	L										
	The s	tudent	s will b	oe able	to solv	ve leac	hate ar	nd gas	proble	ms fron	n wastes	and
4	the de	esign g	eo syn	thetic o	clay lin	ers						
	Н	М	L									
	The students will be able to identify contaminated soil and to select the type of						pe of					
5	remediation required for that soil.											
	Н	М	L									
	The s	tudent	s will t	e able	to und	erstan	d the c	hange	in engi	neering	proper	ties
6	due te	o chang	ge in ei	nviron	ment.							
	М	L										

JUSTIFICATION FOR CO-PO MAPPING:

CO	PO	MAPPING	JUSTIFICATION
C01	P01	MEDIUM	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to know about soil-water- environment interaction.
	PO2	LOW	The students will be able to identify, and analyze types of wastes and provide a solution by their geotechnical application and substantiated conclusions based on engineering sciences
CO2	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and engg. specialization to know about different types of wastes and provide a solution by their geotechnical application.
	PO2	MEDIUM	The students will be able to identify, formulate, research literature, and analyze engineering problems of waste disposal and to provide a solution by their geotechnical application.
	P03	LOW	The students will be able to identify different types of wastes and provide a solution by their geotechnical application to

CO	РО	MAPPING	JUSTIFICATION				
			meet the specifications with consideration for the public				
			health and safety, and the cultural, societal, and				
			environmental considerations				
			The students will be able to identify different types of wastes				
	D0-		and provide a solution by their geotechnical application,				
	P07	MEDIUM	hence understanding the impact of the professional				
			engineering solutions in societal and environmental contexts				
			and need for sustainable development.				
			The students will be able to identify different types of wastes				
	P09	MEDIUM	and provide a solution by their geotechnical application by				
			functioning effectively as an individual, and as a member or leader in teams.				
			The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and engg.				
	P01	MEDIUM	specialization to understand about landfill and to construct				
			compacted clay liner				
			The students will be able to identify engineering problems of				
			waste disposal to arrive at substantiated conclusions of				
	P02	LOW	understanding about landfill and to construct compacted				
			clay liner				
			The students will be able to apply the knowledge of				
004	D01	man	mathematics, science, engineering fundamentals, and engg.				
C04	P01	HIGH	specialization to solve leachate and gas problems from				
			wastes and the design geo synthetic clay liners.				
			Identify and analyze engineering problems of leachate and				
	P02	MEDIUM	gas problems from wastes and the design of geo synthetic				
			clay liners				
			The students will be able to solve leachate and gas problems				
	P03	LOW	from wastes and the design geo synthetic clay liners with				
		2011	consideration for the public health and safety, and the				
			cultural, societal, and environmental considerations				
			The students will be able to apply the knowledge of science,				
C05	P01	HIGH	engineering fundamentals, and engg. specialization to				
			identify contaminated soil and to select the type of				
			remediation required for that soil.				
			The students will be able to identify, and analyze engineering				
	P02	MEDIUM	problems of contaminated soil and to select the type of				
			remediation required for that soil. Hence arriving at substantiated conclusions using engineering sciences				
			The students will be able to identify contaminated soil and to				
	P03	LOW	select the type of remediation required for that soil with				
			science the type of remember anon required for that soll with				

CO	PO	MAPPING	JUSTIFICATION
			consideration for the public health and safety, and the
			cultural, societal, and environmental considerations
			The students will be able to apply the knowledge of
C06	P01	MEDIUM	mathematics, science, engineering fundamentals, and
000	FUI		engineering specialization to understand the change in
			engineering properties due to change in environment.
			The students will be able to identify, and analyze engineering
	P02	LOW	problems of change in environment and corresponding
			change in geotechnical properties.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl No	DESCRIPTION	PROPOSED ACTIONS
1	No mentions about industries which reuses non	Assignment
	bio degradable wastes.	

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl No	DESCRIPTION
1	

WEB SOURCE REFERENCES:

Sl No	DESCRIPTION
1	www.nptel.ac.in
2	http://gen.lib.rus.ec/search.php?req=designing+with+geosynthetics≶_topic =libgen&open=0&view=simple&res=25&phrase=0&column=def

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	\checkmark	STUD. ASSIGNMENT	\checkmark	WEB RESOURCES	
LCD/SMART BOARDS	~	STUD. SEMINARS		ADD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	. /	STUD.	TESTS/MODEL	. /	UNIV.	. /
ASSIGNMENTS	\sim	SEMINARS	EXAMS	~	EXAMINATION	~
STUD. LAB		STUD.	MINI/MAJOR		CERTIFICATIONS	
PRACTICES		VIVA	PROJECTS		CERTIFICATIONS	
ADD-ON		OTHERS				
COURSES		UTHERS				

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	\checkmark	STUDENT FEEDBACK ON FACULTY (TWICE)	\checkmark
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS		OTHERS	

Prepared by Angel Sebastian Approved by Dr. Aysha Zeneeb Majeed

COURSE PLAN

HOUR	MODULE	TOPICS PLANNED
		Introduction and Soil-water-environment interaction :
HOUR 1		Introduction to geoenvironmental Engineering
	1	Soil-water-environment interaction relating to geotechnical
HOUR 2		problems
HOUR 3		Waste:-source, classification and management of waste
HOUR 4		Physical, chemical characterization of municipal solid waste
HOUR 5		geotechnical characterization of municipal solid waste
HOUR 6		Impact of waste dump and its remediation
HOUR 7		Static indeterminacy
HOUR 8		Geotechnical application of waste and disposal
		Geotechnical use of different types such as Thermal power
HOUR 9		plant waste
HOUR 10	2	MSW, mine waste, industrial waste
		Parameters controlling the selection of site for sanitary and
HOUR 11		industrial landfill.
HOUR 12		Site characterization.
HOUR 13		Waste disposal facilities MoEF guidelines
HOUR 14		Landfill Components :Landfill layout and capacity,
HOUR 15	1	Components of landfill and its functions.
HOUR 16	2	Types and functions of liner
HOUR 17	3	Types and functions of cover systems,
HOUR 18		Compacted clay liner
HOUR 19		Selection of soil for liner, methodology of construction.
HOUR 20		Various components of leachate collection
HOUR 21		Management of Leachate and gas.
HOUR 22		Leachate removal system and its design., gas
HOUR 22	4	disposal/utilization.
HOUR 23	4	Closure and post closure monitoring system
HOUR 24		Geo membranes - geosynthetics
HOUR 25		Clay liners -testing and design aspects.
HOUR 26		Soil remediation
HOUR 27		Investigation of contaminated soil
HOUR 28		assessment, sampling
HOUR 29		Transport of contaminants in saturated soil.
HOUR 30	5	Remediation of contaminated soil- in-situ / exit remediation
HOUR 31	J	bio remediation
HOUR 32		thermal remediation
HOUR 33		pump and treat method
HOUR 34		phyto remediation and electro-kinetic remediation
HOUR 35		Change in engineering properties due to change in
1100K 33		environment.
HOUR 36	6	Variation in Engineering properties of soil
HOUR 37		Variation in atterberg limit
HOUR 38		Variation in shear strength

HOUR 39	Variation in permeability
HOUR 40	swelling due to change in environment/pore fluid.
HOUR 41	Discussion
HOUR 42	Discussion

ASSIGNMENT – I

All questions are compulsory

- 1. Explain various geotechnical applications of the following types of wastes:
 - a. Thermal power plant waste
 - b. MSW
 - c. Mine waste
 - d. Industrial waste
- 2. Explain about the type of wastes produced in a nearby industry and their disposal techniques. Examine its geotechnical application.
- 3. Explain the physical, chemical and geotechnical characterisation of MSW.

ASSIGNMENT – II

All questions are compulsory

- 1. Explain landfill components and their functions.
- 2. Explain the various remediation techniques adopted for contaminated soil.
- 3. Explain the variation in the following engineering properties of soil due to change in environment:
 - a. Atterberg limits, shear strength, permeability and swelling

QUESTION BANK

MODULE I

- 1. Explain the sources of ground water contamination
- 2. Explain the transport mechanisms in ground water contamination
- 3. List out the moisture content percentages and density values for various material in MSW.
- 4. Exlpain the impact of waste dump and its remediation
- 5. Explain the various sources of waste
- 6. Explain on the various classification of waste

MODULE II

- 1. Explain the parameters controlling the selection of site for sanitary and industrial landfill.
- 2. Explain MoEF guidelines and site characterisation.

MODULE III

- 1. What is a landfill. Explain on its layout, capacity, components.
- 2. Write a note on compacted clay liner, its selection of soil and methodology of construction.

MODULE IV

- 1. What is a Leachate. Explain Management of Leachate and gas.
- 2. Write a note on various components of leachate collection and removal system and its design.
- 3. Geo membranes and geosynthetic clay liners -testing and design aspects.

MODULE V

- 1. Explain on investigation of contaminated soil
- 2. Write a note on Remediation of contaminated soil

MODULE VI

- 1. Write a note on engineering properties of soil
- 2. Explain Change in engineering properties due to change in environment

CE 469 ENVIRONMENTAL IMPACT ASSESSMENT

COURSE INFORMATION SHEET

PROGRAMME: CE	DEGREE: BTECH		
COURSE: ENVIRONMENTAL IMPACT	SEMESTER: S7		
ASSESSMENT	L-T-P-CREDITS: 3-0-0-3		
COURSE CODE: CE469	COURSE TYPE: ELECTIVE		
REGULATION: 2016	COURSE I IPE: ELECTIVE		
COURSE AREA/DOMAIN: CIVIL	CONTACT HOUDS: 2 hours /Week		
ENGINEERING	CONTACT HOURS : 3 hours/Week.		
CORRESPONDING LAB COURSE CODE	LAB COURSE NAME: NIL		
(IF ANY): NIL	LAD COURSE NAME: NIL		

SYLLABUS:

UNIT	DETAILS	HOURS
I	INTRODUCTION: Classification of Pollution and Pollutants, – Evolution of EIA (Global and Indian Scenario)- Elements of EIA–– Screening – Scoping - Public Consultation - Environmental Clearance process in India - Key Elements in 2006 EIA(Govt. of India)Notification	6
II	AIR POLLUTION: Primary and Secondary Types of Pollutants, sulfur dioxide- nitrogen dioxide, carbon monoxide, WATER POLLUTION: Point and Non-point Source of Pollution, Major Pollutants of Water, Impact of pollutants	6
III	SOLID WASTE: Classification and sources of Solid Waste, Characteristics, effects, e waste, : Effects of urbanization on land degradation, pesticide pollution NOISE POLLUTION: Sources of Noise, Effects of Noise, control measures	7
IV	Impacts of pollutants, types, scale of impact-Global, local pollutants. Climate change, Ozone layer depletion, Deforestation, land degradation, Impact of development on vegetation and wildlife	7
V	Socio-economic impacts - Impact assessment Methodologies- Overlays, Checklist, Matrices, Fault Tree Analysis, Event Tree Analysis- Role of an Environmental Engineer- Public Participation	8
VI	Standards for Water, Air and Noise Quality - Environmental Management Plan- EIA- Case studies of EIA	8
TOTAL	HOURS	42

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	A K Srivastava, Environment impact Assessment, APH Publishing, 2014
T2	John Glasson, Riki Therivel & S Andrew Chadwick "Introduction to EIA"
	University College London Press Limited, 2011
Т3	Larry W Canter, "Environmental Impact Assessment", McGraw Hill Inc. , New
	York, 1995.

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T4	Ministry of Environment & Forests, Govt. of India 2006 EIA Notification
R1	Rau G J and Wooten C.D "EIA Analysis Hand Book" Mc Graw Hill
R2	Robert A Corbett "Standard Handbook of Environmental Engineering" McGraw
	Hill, 1999

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEMESTER
	NIL		

COURSE OBJECTIVES:

1	To know the various types of environmental pollution
2	To make aware the impact due to various types of pollutants and their assessment
	technique

COURSE OUTCOMES:

Sl No.	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
1						-				-	oollutan ts in 20	
2	The s distin vario	H L H The students should be able to understand the various types of air pollution, distinguish the major air pollutants as primary and secondary, understand the various sources of water pollution, major pollutants of water and impact of these pollutants.										
3	MThe students should be able to classify solid waste, understand its sources, characteristics and types, able to understand the land/soil pollution, effects of urbanization on land degradation, assess impact of modern agriculture on soil, pesticide pollution and its effect on environment, understand sources and effects of noise pollution and the control measures						cts of 1 soil,					
4	M L M L M M Image: Margin and M											
5	The students should be able to understand socio-economic impacts and applyImpact assessment Methodologies. The student should discover the role of anEnvironmental Engineer and contribute to Public Participation.HLMH											

Sl No.	P01	PO2	PO3	P04	PO5	P06	PO7	P08	P09	P010	P011	P012
6	stand	The students should be able to understand ambient air, water and noise quality standards, understand Environmental Management Plan and apply the impact analysis in case studies of EIA.										
	Н			L			Н					

JUSTIFICATION FOR CO-PO MAPPING:

CO	PO	MAPPING	JUSTIFICATION						
			Students will be able to apply the knowledge of mathematics,						
	P01	HIGH	science fundamentals to know the different methods of measurement of EIA.						
C01	PO2	LOW	Students will be able to review literature on key elements of EIA 2006						
	PO7	HIGH	Students will be able to understand the impact of the environmental problems and need for sustainable development.						
CO2	P06	MEDIUM	Students will be able to assess societal health and safety issues of air pollution and water pollution.						
	P01	MEDIUM	Students will be able to apply the knowledge of mathematics, science fundamentals to know the different methods of measurement of noise.						
	PO4	LOW	Students will be able to analyze and interpret admissible noise levels						
C03	PO5	MEDIUM	Students will be able to select appropriate techniques for disposal of solid waste based on their composition						
03	P06	LOW	Students will be able to apply knowledge to assess the effects of soil pollutants on societal and health effects						
	P07	HIGH	Students will be able to understand the impact due to effects of urbanization on land degradation and pesticide pollution and need for sustainable development.						
	P08	MEDIUM	Students could apply ethical principles and commit to professional ethics by abiding to the standards of Central Pollution Control Board						
	P06	LOW	Students will be able to apply knowledge to assess the impacts of pollutants on societal and health effects						
CO4	PO7	HIGH	Students will be able to understand the impact of pollutants on climate change, ozone layer depletion, deforestation, land degradation and also impacts of development on vegetation and wildlife and need for sustainable development.						

CO	PO	MAPPING	JUSTIFICATION				
	PO1	HIGH	Students will be able to apply the knowledge of mathematics, science fundamentals to know the different methods of measurement of EIA.				
	P04	LOW	Students will be able to analyze and interpret EIA				
C05	P06	Students will be able to apply knowledge of EU					
05	P07	HIGH	Students will be able to understand the impact of the environmental problems and need for sustainable development.				
	PO8 HIGH		Students could apply ethical principles and commit to professional ethics by discovering his role as a n environmental engineer				
	PO1 HIGH		The students will be able to analyze and interpret air quality standards, water quality standards and ambient noise quality.				
C06	P04	LOW	Students will be able to analyze and interpret EIA				
	P07	HIGH	Students will be able to understand the impact of the environmental problems and need for sustainable development.				

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl No	DESCRIPTION	PROPOSED ACTIONS			
1	Components of Environment – Man and Environment	Assignment			
	- Health and Environment - Environmental Ethics -				
	Interdisciplinary nature of Environment – Sustainable				
	development – Social, economical and environmental				
	dimensions				

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl No	DESCRIPTION
1	Strategic Environmental Assessment (SEA)

WEB SOURCE REFERENCES:

Sl No	DESCRIPTION
1	http://nptel.ac.in/courses/120108004/5

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	\checkmark	STUD. ASSIGNMENT	\checkmark	WEB RESOURCES	\checkmark
LCD/SMART BOARDS		STUD. SEMINARS		ADD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	\checkmark	STUD. SEMINARS	TESTS/MODEL EXAMS	\checkmark	UNIV. EXAMINATION	\checkmark
STUD. LAB PRACTICES		STUD. VIVA	MINI/MAJOR PROJECTS		CERTIFICATIONS	
ADD-ON COURSES		OTHERS				

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	\checkmark	STUDENT FEEDBACK ON FACULTY (TWICE)	\checkmark
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS		OTHERS	

Prepared by Dr. Asha Viswanath Approved by Dr. Aysha Zeneeb Majeed

COURSE PLAN

HOUR	MODULE	TOPICS PLANNED
HOUR 1	MODULL	Classification of Pollution and Pollutants
HOUR 2		Evolution of EIA (Global and Indian Scenario)
HOUR 3	- 1	Elements of EIA - Screening, Scoping
HOUR 4		Public Consultation
HOUR 5		Environmental Clearance process in India
HOUR 6		Key Elements in 2006 EIA(Govt. of India)Notification
HOUR 7		AIR POLLUTION: Primary and Secondary Types of Pollutants
HOUR 8		sulfur dioxide, nitrogen dioxide, carbon monoxide
HOUR 9	0	WATER POLLUTION: Point Source of Pollution
HOUR 10	2	Non-point Source of Water Pollution
HOUR 11		Major Pollutants of Water
HOUR 12		Impact of pollutants
HOUR 13		SOLID WASTE: Classification and sources of Solid Waste
HOUR 14		Characteristics and effects of solid waste, e- waste
HOUR 15		Effects of urbanization on land degradation
HOUR 16	3	pesticide pollution
HOUR 17		NOISE POLLUTION: Sources of Noise
HOUR 18		Effects of Noise pollution
HOUR 19		Noise control measures
HOUR 20		Impacts of pollutants and types
HOUR 21		scale of impact-Global and local pollutants
HOUR 22	4	Climate change
HOUR 23	4	Ozone layer depletion
HOUR 24		Deforestation, land degradation
HOUR 25		Impact of development on vegetation and wildlife
HOUR 26		Socio-economic impacts
HOUR 27		Impact assessment Methodologies - Overlays
HOUR 28		Checklist
HOUR 29	5	Matrices
HOUR 30	5	Fault Tree Analysis
HOUR 31		Event Tree Analysis
HOUR 32		Role of an Environmental Engineer
HOUR 33		Public Participation
HOUR 34		Standards for Water Quality
HOUR 35		Air Quality
HOUR 36	6	Noise Quality
HOUR 37		Environmental Management Plan
HOUR 38		EIA
HOUR 39		Case studies of EIA
HOUR 40		Case studies of EIA
HOUR 41		Revision
HOUR 42		Tutorials

QUESTION BANK

Short answer questions

Module 1

- 1. Define and briefly discuss EIA outlining its importance.
- 2. Write a short note on Screening.
- 3. Discuss the role of consultation and public /stakeholder participation in an EIA process. At what stages of an EIA is the public involved/ consulted?
- 4. Highlight the advantages and disadvantages of public participation in the overall environmental clearance process of any project.

Module 2

- 5. What are types and sources of particulate matter causing air pollution.
- 6. Identify the various pollution sources of following air contaminants:
 - a. Sulphur Dioxide
 - b. Nitrogen Dioxide
 - c. Carbon Monoxide
- 7. What is 'Smog'? Discuss cause and effects.
- 8.
- a. Distinguish between primary and secondary air pollutants.
- b. What is difference between a point source and a dispersed source of pollutants? Give example of each.
- 9. Is groundwater naturally pure? Why?

Module 3

- 10. What are solid wastes? How solid wastes are disposed ultimately?
- 11. What is meant by low level Radioactive wastes?
- 12. Write short notes on e-waste generation.
- 13. Which do you think is a greater danger to man
 - a. Pesticides used by farmers and householders or
 - b. Toxic substances used by industrial plants.
- 14. What does the term 'Hertz' refer to? How is it related to pitch?
- 15. What is sound exposure level(SEL)? Explain its application.
- 16. What are the four basic ways in which noise can be controlled or reduced? Which is most effective way?
- 17. Write a short note on detrimental effects of noise.

Module 4

- 18. Briefly explain the impact of development on vegetation and wild life.
- 19. Clearly point out the Abatement measures opted against land degradation.
- 20. Write a short note on ozone layer depletion.

Module 5

21. Write a short note on fault-tree analysis.

- 22. Explain the checklist method of impact assessment.
- 23. Briefly explain the various types of Socio-economic impacts.
- 24. Enlist the drawbacks of Matrix method of EIA.

Module 6

- 25. Write a short note on standards for noise quality.
- 26. Give the Indian air quality standards for residential, industrial and sensitive areas.
- 27. Write a note on emission standards.
- 28. Differentiate the water quality characteristics between surface water and groundwater sources.
- 29. Mention typical values of acceptable levels of sound as per IS codes for:
 - a. Rural areas
 - b. Urban residential areas
 - c. City areas
 - d. Industrial areas

Long answer questions

Module 1

- 30. Explain briefly the evolution of EIA.
- 31. Explain in general the environmental clearance process in India.
- 32. Differentiate between screening and scoping in the EIA process.
- 33. Summarize the purpose and Benefits of the EIA process.

Module 2

- 34. Describe the various air pollution sources in an industrialised city like Bombay.
- 35. Are ocean waters immune to pollution problems? Briefly discuss your answer.

Module 3

- 36. Discuss the effects of urbanization on land degradation.
- 37. What are the effects of distance on sound levels from a point source and a line source? Why do they differ?

Module 4

- 38. Discuss the types and scale of impacts of various pollutants.
- 39. What is climate change? Discuss the detrimental effects of land degradation.

Module 5

- 40. Explain the role of public participation in EIA and write a short note on overlay and matrix method of impact assessment.
- 41. Explain the role of environmental engineer in EIA and write a short note on Event tree analysis.

Module 6

- 42. Write a short note on water quality analysis and explain the standards for water quality.
- 43. Explain briefly the preparation of Environmental Management plan for a hydroelectric power project.

Beyond syllabus questions

- 44. Suggest possible mitigation measures for the following environmental impacts from an irrigation and drainage scheme:
 - a. Water quality problems for downstream users caused by irrigation return flow.
 - b. Ground water depletion.
 - c. Increase incidence of water related disease. (6 marks)
- 45. Explain how EIA fits in the concept of sustainable development.
- 46. Outline the key areas required during an EIA. (14 marks)
- 47. Define and briefly explain the role of each of the following participant in an EIA process
 - a. Proponent
 - b. Licensing authority
 - c. Lead expert
 - d. The local community
- 48. Discuss the problems and challenges that are associated with EIA in developing countries. (10 marks)
- 49. Discuss the social impacts that could be associated with constructing a huge dam in a typical rural environment. (10 marks)
- 50. EIA is an art cum science skill. Give your comments

ASSIGNMENT – I

Questions 3, 5, 7, 31 and 34.

To be submitted on September 7th, 2018

ASSIGNMENT - II

Questions 13, 15, 20,24,29,36,41 and 43.

To be submitted on November 14th, 2018

CE 473 ADVANCED COMPUTATIONAL TECHNIQUES AND OPTIMISATION

COURSE INFORMATION SHEET

PROGRAMME: CE	DEGREE: BTECH
COURSE: ADVANCED COMPUTATIONAL	SEMESTER: S7
TECHNIQUES AND OPTIMIZATION	L-T-P-CREDITS: 3-0-0-3
COURSE CODE: CE473	COURSE TYPE : Elective
REGULATION: 2016	COURSE I IPE: Elective
COURSE AREA/DOMAIN: MATHEMATICS	CONTACT HOURS : 3 hours/Week.
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: NIL
ANY): NIL	LAD COURSE NAME: NIL

SYLLABUS:

UNIT	DETAILS	HOURS
I	Introduction to numerical methods – errors in numerical methods – Systems of linear algebraic equations – Elimination and factorization methods – Gauss Seidel iteration. Eigen Value problems – power method.	6
II	General Optimisation procedures – and features of mathematical programming as applicable to Civil engineering problems. Unconstrained and constrained optimization problems – Formulation of objective function and constraints	6
III	Lagrangian interpolation – Quadratic and Cubic splines (Problems on quadratic splines only) – Data smoothing by least squares criterion – Non-polynomial models like exponential model and power equation – Multiple linear regression. Numerical integration – Newton – Cotes open quadrature	7
IV	Linear Programming – Simplex method standard form – Simplex algorithm – Two phase solution by simplex method – Duality of linear programming Formulation of geometric programming	7
v	Ordinary differential equations – 1st order equations – Solution by use of Taylor series – Runge-kutta method – Ordinary differential equations of the boundary value type – Finite difference solution – Partial differential equations in two dimensions – Parabolic equations – Explicit finite difference method – Crank-Nicholson implicit method – Elipse equations	8
VI	Non-Linear Programming problems – one dimensional minimisation. Unconstrained optimization Techniques Direct search method. Random search Univariate pattern search. Descent methods.	8
TOTAL	HOURS	42

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	Grewal B.S. "Numerical Methods in Engineering and Science" Khanna
T2	Chapra S.C. and Canale R.P. "Numerical Methods for Engineers" McGraw Hill 2006.

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T3	Smith G.D. "Numerical solutions for Differential Equations" McGraw Hill
T4	Ketter and Prawel "Modern Methods for Engineering Computations" McGraw
	Hill
R1	Rajasekharan S. "Numerical Methods in Science and Engineering"S Chand &
	company 2003
R2	Terrence .J.Akai "Applied Numerical Methods for Engineers", Wiley publishers
	1994.
R3	R.L. Fox , Optimisation methods in Engineering Design, Addison Wesely
R4	Rajasekharan S. "Numerical Methods for Initial and Boundary value problems,"
	Khanna publishers 1989
R5	S.S. Rao , Optimisation Theory and applications , ,Wiley Eastern.
	Belegundu., Optimisation concepts and Applications Engineering

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEMESTER
MA202	Probability distribution,	Fundamentals of Numerical	S4
	Transforms and Numerical	method	
	methods		
CE306	Computer programming and	Fundamentals of application of	S5
	Computational Techniques	programming	

COURSE OBJECTIVES:

1	To introduce different numerical solutions and importance of optimization
2	To impart ability to apply mathematics and optimizing techniques for finding
	solutions to real time problems

COURSE OUTCOMES:

Sl No.	P01	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	P010	P011	P012
	The students will be able to find different numerical solutions of complicated											
1	probl	ems										
	Н	М	М									
	The s	studen	ts sho	uld be	able	to det	ermine	e solut	ions o	f real t	ime pro	oblems
2	apply	ing nu	merica	l meth	ods in	Mathe	matica	l conce	pt			
		L		М								
	Stude	ents wi	ll be a	ble to	unders	tand t	he imp	ortanc	e of op	otimizat	ion and	apply
3	optim	nization	n techn	iques i	in real	time p	roblem	IS				
	Н		L									
	The	studen	ts sho	ould be	e able	to fo	rmulat	te diff	erent	type of	optimi	ization
4 problems.												
		Н	М									

JUSTIFICATION FOR CO-PO MAPPING:

CO	РО	MAPPING	JUSTIFICATION			
601	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of Numerical problems			
C01	PO2	MEDIUM	The students will be able to identify and analyse different type of errors in real time problems			
	P03	MEDIUM	The students will be able to find appropriate methods and solve linear system of algebraic equation.			
C02	PO2	LOW	The students will be able to identify appropriate method to solve partial differential equation in numerical method.			
02	P04	MEDIUM	The students will be able to identify and solve multi variable optimisation with and without constraints.			
CO3	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization in nonlinear programming.			
03	CO3 PO3 LOW		The students will be able to identify and formulate algorithms to solve multivariable nonlinear programming without constraints.			
C04	PO2	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of Interpolation methods.			
	P03	MEDIUM	The students will be able to solve cubic and quadratic interpolation			

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl No	DESCRIPTION	PROPOSED ACTIONS
1	Solution of transcendental equations	Assignment

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Sl No	DESCRIPTION	PROPOSED ACTIONS
1	Developing a C++ program to solve linear	1. Lab sessions
	programming problem.	2. Assignment
		3. Seminar

WEB SOURCE REFERENCES:

Sl No	DESCRIPTION
1	www.nptel.ac.in

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CH	ALK & TALK	\checkmark	STUD. ASSIGNMENT	\checkmark	WEB RESOURCES	
	D/SMART ARDS		STUD. SEMINARS		ADD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	\checkmark	STUD. SEMINARS	TESTS/MODEL EXAMS	\checkmark	UNIV. EXAMINATION	\checkmark
STUD. LAB PRACTICES		STUD. VIVA	MINI/MAJOR PROJECTS		CERTIFICATIONS	
ADD-ON COURSES		OTHERS				

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	\checkmark	STUDENT FEEDBACK ON FACULTY (TWICE)	\checkmark
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS		OTHERS	

Prepared by Binu R

Approved by Dr. Antony V Varghese

COURSE	PLAN
--------	------

COURSE PLAN					
HOUR	MODULE	TOPICS PLANNED			
HOUR 1	_	Introduction			
HOUR 2		Errors			
HOUR 3	_	Problems			
HOUR 4	1	Solution of linear systems			
HOUR 5		Elimination and factorization methods			
HOUR 6		Gauss Seidel iteration			
HOUR 7		Eigen Value problems-power method.			
HOUR 8		General Optimisation procedures - and features of			
noono		mathematical programming			
HOUR 9	2	Features of mathematical programming as applicable to Civil			
		engineering problems			
HOUR 10		Unconstrained and constrained optimization problems			
HOUR 11		Unconstrained and constrained optimization problems			
HOUR 12		Formulation of objective function and constraints			
HOUR 13		Problems			
HOUR 14		Lagrangian interpolation			
HOUR 15		Quadratic and Cubic splines (Problems on quadratic splines			
HOUK 15		only)			
HOUR 16		Problems			
HOUR 17	3	Data smoothing by least squares criterion			
HOUR 18		Non-polynomial models, exponential model and power			
HOUK 18		equation			
HOUR 19		Numerical integration			
HOUR 20		Newton – Cotes open quadrature			
HOUR 21		Ordinary differential equations- 1st order equations			
HOUR 22		Solution by use of Taylor series			
HOUR 23		Runge- kutta method			
HOUR 24	4	Ordinary differential equations of the boundary value type			
HOUR 25		Finite difference solution			
HOUR 26		problems			
HOUR 27		problems			
HOUR 28		Partial differential equations in two dimensions			
HOUR 29		Parabolic equations			
HOUR 30		Explicit finite difference method-			
HOUR 31	-	Crank-Nicholson implicit method-			
HOUR 32	5	Ellipse equations			
HOUR 33		Problems			
HOUR 34		Problems			
HOUR 35		Problems			
HOUR 36	6	Non- Linear Programming problems –			
HOUR 37		One dimensional minimisation.			
HOUR 38		Unconstrained optimization Techniques			
HOUR 39		Direct search method.			
HOUR 40		Random search Univariate pattern search			
HOUR 41		Descent methods			
	l				

Course Handout, S7CE

HOUR 42	Problems
HOUR 43	problems

ASSIGNMENT – I

All questions are compulsory

- 1. Prepare a note on different type of errors in numerical method
- 2. Prepare a flow chart and algorithm for cubic and quadratic interpolation
- 3. Derive Newton quadrature formula.
- 4. Derive Simpsons formula for numerical integration from the above formula.

To be submitted on September 4th, 2018

ASSIGNMENT – II

All questions are compulsory

- 1. Explain Simplex algorithm to solve linear programming problem
- 2. Explain nonlinear unconstrained optimization
- 3. Maximize $Z = 3x_1 + 2x_2 + 5x_3$ subject to $x_1 + 4x_2 \le 420, 3x_1 + 2x_3 \le 460, x_1 + 2x_2 + x_3 \le 430$; $x_1, x_2, x_3 \ge 0$

To be submitted on November 5th, 2018

CE 451 SEMINAR AND PROJECT PRELIMINARY

S

COURSE INFORMATION SHEET

PROGRAMME: CE	DEGREE: BTECH
COURSE: SEMINAR AND PROJECT	SEMESTER: S7
PRELIMINARY	L-T-P-CREDITS: 0-1-4-2
COURSE CODE: CE451	COURSE TYPE: CORE
REGULATION: 2016	COURSE I IFE: CORE
COURSE AREA/DOMAIN: CIVIL	CONTACT HOURS: 5 hours/Week.
ENGINEERING	CONTACT HOOKS: 5 Hours/ week.
CORRESPONDING LAB COURSE CODE	LAB COURSE NAME: NIL
(IF ANY): NIL	LAB COURSE NAME: NIL

SYLLABUS:

UNIT	DETAILS
Seminar:	Each student shall identify a topic of current relevance in his/her branch of engineering, get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughly, prepare own report and present in the class
Project:	Identify suitable project relevant to the branch of study. Form project tea (not exceeding four students). The students can do the project individually also. Identify a project supervisor. Present the project proposal before the assessment board (excluding the external expert) and get it approved by the board. The preliminary work to be completed: 1. Literature Survey 2. Formulation of objectives 3. Formulation of hypothesis/design/methodology 4. Formulation of work plan 5. Seeking funds 6. Preparation of preliminary report

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION								
T1	Michael Luchs, Scott Swan, Abbie Griffin, 2015. Design Thinking. 405 pages,								
	John Wiley & Sons, Inc								

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEMESTER
BE102	DESIGN AND ENGINEERING	FUNDAMENTAL KNOWLEDGE CREATIVE DESIGN	FIRST
CE341	DESIGN PROJECT	KNOWLEDGE CREATIVE DEIGN	FIFTH

COURSE OBJECTIVES:

1	To develop skills in doing literature survey, technical presentation and report							
	preparation							
2	To enable project identification and execution of preliminary works on final							
	semester project							

COURSE OUTCOMES:

Sl No.	P01	P02	P03	PO4	P05	P06	P07	P08	P09	P010	P011	P012	
	Students will develop skills in doing literature survey, technical presentation												
1	and report preparation												
	Н	М		М									
	Stude	ents wi	ll be ab	le to a	nalyse	a curre	ent top	ic of pr	ofessio	onal inte	erest an	d	
2	present it before an audience												
	Н	Н	Н	Н									
	Students will be able determine an engineering problem, analyse it and propose												
3	a work plan to solve it												
	Н	М	М	М					М				
	Stude	ents wi	ll be ab	le to io	lentify	a proje	ect and	execu	te its p	relimina	ary wor	ks on	
4	final s	semest	er proj	ect									
	Н	М	М	М					М				

JUSTIFICATION FOR CO-PO MAPPING:

CO	PO	MAPPING	JUSTIFICATION
	P01	HIGH	Students could apply the knowledge of various engineering fundamentals to develop skills in doing literature survey, technical presentation and report preparation.
C01	PO2	MEDIUM	Students could review research literature for technical presentation and report preparation.
	PO4	MEDIUM	Students could use research-based knowledge to identify a project and execute its preliminary works on final semester project.
	P01	HIGH	Students could apply the knowledge of various engineering fundamentals to analyse a current topic of professional interest
CO2	PO2	HIGH	Students could review research literature to analyse a current topic of professional interest and present it before an audience
	PO4	HIGH	Students could use research-based knowledge to analyse a current topic of professional interest.
CO3	P01	HIGH	Students could apply the knowledge of various engineering fundamentals to identify an engineering problem and analyse it and propose a work plan

CO	РО	MAPPING	JUSTIFICATION							
	P02	MEDIUM	Students could review research literature to analyse a problem and prepare work plan.							
	PO3	HIGH	Use research-based knowledge and research methods including analysis and interpretation of data to analyse a problem.							
	P04	MEDIUM	Students could use research-based knowledge to analyse a problem and prepare work pan.							
	P09	HIGH	Students could function effectively as an individual, and as a member or leader in diverse teams to prepare work plan.							
	P01	HIGH	Students could apply the knowledge of various engineering fundamentals							
	P02	HIGH	Students could review research literature to identify a problem and execute its preliminary works							
CO4	CO4 PO3 ME		Use research-based knowledge and research methods including analysis and interpretation of data to identify a problem.							
	P04	HIGH	Students could use research-based knowledge to identify a problem and prepare preliminary works							
	P09	HIGH	Function effectively as an individual, and as a member or leader in diverse teams to start preliminary works.							

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl No	DESCRIPTION	PROPOSED ACTIONS
1	NIL	

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	STUD. ASSIGNMENT		WEB RESOURCES	
LCD/SMART BOARDS	STUD. SEMINARS	>	ADD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS		STUD. SEMINARS	\checkmark	TESTS/MODEL EXAMS		UNIV. EXAMINATION	
STUD. LAB PRACTICES	\checkmark	STUD. VIVA	\checkmark	MINI/MAJOR PROJECTS	\checkmark	CERTIFICATIONS	
ADD-ON COURSES		OTHERS					

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	\checkmark	STUDENT FEEDBACK ON FACULTY (TWICE)	\checkmark
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS		OTHERS	

Prepared by Deepthi I Gopinath Approved by Dr. Aysha Zeneeb Majeed

COURSE PLAN

DAY	TOPICS PLANNED
DAY 1	Selection of topics for seminar
DAY 2	Study of topics for seminar
DAY 3	Study of topics for seminar
DAY 4	Presentation of seminar topics
DAY 5	Presentation of seminar topics
DAY 6	Report preparation of seminar
DAY 7	Report submission of Seminar and Project Topic selection
DAY 8	Study and discussion of project preliminary works
DAY 9	Study and discussion of project preliminary works
DAY 10	Study and discussion of project preliminary works
DAY 11	Project Preliminary presentation

EVALUATION

SEMINAR

- 1. Presentation: 40%
- 2. Ability to answer questions: 30%
- 3. Report: 30%

PROJECT PRELIMINARY

- 1. Progress evaluation by the supervisor: 40%
- 2. Progress evaluation by the assessment board excluding external expert: 60%

CE 431 ENVIRONMENTAL ENGINEERING LAB

Т

COURSE INFORMATION SHEET

PROGRAMME: CE	DEGREE: BTECH
COURSE: ENVIRONMENTAL	SEMESTER: S7
ENGINEERING LAB	L-T-P-CREDITS: 0-0-3-1
COURSE CODE: CE431	COURSE TYPE: REGULAR
REGULATION: 2016	COURSE I IPE: REGULAR
COURSE AREA/DOMAIN: CIVIL	CONTACT HOURS : 3 hours/Week.
ENGINEERING	CONTACT HOOKS. 5 Hours/ week.

LIST OF EXERCISES:

Sl. No.	DETAILS
1.	To analyse the physical characteristics viz. colour, turbidity, and conductivity
1.	of a given water sample and to determine its suitability for drinking purposes
2.	To analyse the chemical characteristics of a given water sample viz. pH,
۷.	acidity, alkalinity for assessing its potability
	To analyse the chemical characteristics of a given water sample viz. chlorides
3.	and sulphates content to assess its suitability for drinking purposes and
	building construction
4.	To determine the Dissolved Oxygen content of a given water sample for
4.	checking its potability
5.	To determine the available chlorine in a sample of bleaching powder
6.	To analyse the various types of solids in a given water sample
7.	To determine the BOD of a given wastewater sample
8.	To determine the COD of a given wastewater sample
9.	To determine the optimum dosage of alum using Jar test
10.	To determine the Nitrates / Phosphates in a water sample
11.	To determine the iron content of a water sample
12.	To determine the MPN content in a water sample and assess the suitability for
12.	potability

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	S.K.Garg, "Water Supply Engineering", Khanna Publishers. 2010
T2	B.C Punmia, "Water Supply Engineering", Laxmi Publications Pvt. Ltd., 2
R1	"Standard methods for the examination of water and wastewater" 1995, ALPHA, AWWA, WPCF Publication
R2	"Chemistry for Environmental Engineering"- Sawer and McCarty, McGraw Hill.
R3	"Manual of standards of quality for Drinking Water Supplies"- Indian Council of Medical Research, New Delhi.
R4	"International Standards of Drinking Water" – W.H.O.

•	T/R	BOOK TITLE/AUTHORS/PUBLICATION
	R5	"IS 2490-1981, IS 3306- 1974, IS 3307-1977, IS 7968-1976, IS 2296-1974, IS
	110	10500- 1991" Bureau of Indian Standards, New Delhi, Effluent Standard KSPCB

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEMESTER	
CE203	FLUID MECHANICS- I	Basic knowledge of pipe flow	S3	
	FLUID MECHANICS- I	and Bernoulli's Equation	33	
ENGINEERING		Basic concepts of chemical	S1	
CY100	CHEMISTRY	reactions and mass balance	51	

COURSE OBJECTIVES:

1 To equip the students in doing analysis of water and waste water

COURSE OUTCOMES:

Sl No.	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO1 0	P01 1	P01 2
	The students will be able to understand the importance of water quality standards											
1	М											
2	The st	udent	will be a	able to	analyse	e the Di	ssolved	l oxyge	n conte	nt in w	ater	
2	Н	Н		Н								
	The st	udent	will be a	able to	determ	ine the	Biolog	ical Oxy	ygen De	emand	and Che	emical
3	Oxyge	n Dema	and in v	waste w	vater							
	Н		Н									
					•	e the cł	nemical	charac	teristic	s of a g	iven wa	ater
4	-	· ·	H, acidi	ity, alka	linity							
	Н	Н	М									
					•	e the pl	•		teristics	s viz. co	lour,	
5	turbidity, and conductivity of a given water sample											
	Н	Н										
6	The st	udent	will be a	able to	deterr	nine th	e optim	um do	sage of	alum u	sing Jai	test
0	Н	Н										
	To ana	alyse the	e chemi	cal char	acterist	ics of a	given v	vater sa	mple vi	z. chlor	ides, Iro	on,
7	Availa	ble Chl	orine a	nd sulp	hates o	content	to asse	ss its s	uitabili	ty for d	rinking	
,	purpo	ses										
	Н	Н										

JUSTIFICATION FOR CO-PO MAPPING:

CO	PO	MAPPING	JUSTIFICATION		
C01	P01	MEDIUM	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals inferring the quality of water		

CO	PO	MAPPING	JUSTIFICATION
	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals for dissolved oxygen content in water.
CO2	PO2	HIGH	The students will be able to identify, formulate and review research literature for dissolved oxygen content in water reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
	PO4	HIGH	The students will be able to use research-based knowledge and research methods including design of experiments, analysis and interpretation of dissolved oxygen content.
	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals for BOD and COD.
CO3	PO3	HIGH	The students will be able to initiate the design solutions water quality indicators like BOD and COD and suggest remedial measures that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals for finding out chemical parameters like pH, acidity, alkalinity
CO4	PO2	HIGH	The students will be able to identify, formulate, review research literature, and analyse pH, acidity, alkalinity using Indian standard methods in reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
	PO3	MEDIUM	The students will be able to design solutions for making the pH, acidity, alkalinity within the standard levels
C05	PO1	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals for finding out the physical characteristics viz. colour, turbidity, and conductivity of a given water sample
	PO2	HIGH	The students will be able to identify and examine physical characteristics viz. colour, turbidity, and conductivity of a given water sample using natural sciences, and engineering sciences
C06	PO1	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to find the optimum dosage of alum using Jar test
	PO2	HIGH	The students will be able to identify, formulate, review research literature, and analyse the optimum dosage of alum using Jar test reaching substantiated conclusions natural sciences, and engineering sciences
C07	P01	HIGH	The students will be able to apply the knowledge of mathematics, science, engineering fundamentals to examine the chemical characteristics viz. chlorides, Iron, Available

CO	PO	MAPPING	JUSTIFICATION
			Chlorine and sulphates content to assess its suitability for drinking purposes.
	PO2	HIGH	The students will be able to identify, formulate, review research literature, and analyse chemical characteristics viz. chlorides, Iron, Available Chlorine and sulphates content using first principles of mathematics, natural sciences, and engineering sciences

WEB SOURCE REFERENCES:

Sl No	DESCRIPTION
1	www.nptel.ac.in

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	\checkmark	STUD. ASSIGNMENT	\checkmark	WEB RESOURCES	
LCD/SMART		STUD. SEMINARS		ADD-ON COURSES	
BOARDS		STOD. SEMINARS		ADD-ON COONSES	

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	\checkmark	STUD.	TESTS/MODEL		UNIV.	
		SEMINARS	EXAMS	\checkmark	EXAMINATION	
STUD. LAB		STUD.	MINI/MAJOR		CERTIFICATIONS	
PRACTICES		VIVA	PROJECTS		CERTIFICATIONS	
ADD-ON		OTHERS				
COURSES		UTHERS				

ASSESSMENT METHODOLOGIES-INDIRECT

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	\checkmark	STUDENT FEEDBACK ON FACULTY (TWICE)	\checkmark
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS		OTHERS	

Prepared by Arun B Approved by Dr.AyshaZeneebMajeed

COURSE PLAN

DAY	CYCLE	TOPICS PLANNED
DAY 1		To analyse the physical characteristics viz. colour, turbidity, and conductivity of a given water sample and to determine its suitability for drinking purposes
DAY 2		To analyse the chemical characteristics of a given water sample viz. pH, acidity, alkalinity for assessing its potability
DAY 3	1	To analyse the chemical characteristics of a given water sample viz. chlorides and sulphates content to assess its suitability for drinking purposes and building construction
DAY 4		To determine the Dissolved Oxygen content of a given water sample for checking its potability
DAY 5		To determine the available chlorine in a sample of bleaching powder
DAY 6		To analyse the various types of solids in a given water sample
DAY 7		To determine the BOD of a given wastewater sample
DAY 8		To determine the COD of a given wastewater sample
DAY 9		To determine the optimum dosage of alum using Jar test
DAY 10	2	To determine the iron content of a water sample
DAY 11		Quick revision of all the experiments
DAY 12		Exam

OPEN QUESTIONS

- 1. Explain the process involved in the analysis of nitrate using spectrophotometer
- 2. Explain the principle of turbidity meter
- 3. What is the importance of indicators in acidity and alkalinity determination of water
- 4. Differentiate between the quality of drinking water and construction water using respective standard codes
- 5. How alum can act as a coagulant in turbid water?
- 6. What is the reason for blue colour during DO experiment
- 7. Differentiate between COD and BOD
- 8. Explain Beer-Lamberts Law
- 9. How conductivity is related with dissolved solid concentration?
- 10. What is meant by sludge volume index, explain its significance?

ADVANCED QUESTIONS

Objective Questions

- 1. The turbidity is measured based on the
 - Light absorbing properties
 - Light scattering properties
 - Particle size
 - Particle mass
- 2. Using a conductivity meter we can measure
 - Specific conductance
 - Equivalent conductance
 - Specific resistance
 - Concentration
- 3. The measurement of conductivity may lead to the estimation of
 - Total solids
 - Total dissolved solids
 - Colloidal solids
 - Suspended solids
- 4. The limit of chlorides in drinking water as per IS code is
 - 200 ppm
 - 225 ppm
 - 250 ppm
 - 500 ppm
- 5. Silver nitrate is stored in brown bottle
 - To avoid decomposition by sunlight
 - Because it is dark in colour
 - Because the solution is colourless
 - To avoid heat
- 6. Alkalinity of water is an indication of

- Base neutralizing capacity
- Acid neutralizing capacity
- Quantity of base present
- Quality of base present
- 7. A standard solution is a
 - Solution of accurately known strength
 - Solution of accurately known pH
 - Coloured solution
 - Colourless solution
- 8. To prepare 100 ml of 0.02 N of NaOH from 1 N NaOH , dilute of NaOH
 - 20 ml
 - 2 ml
 - 0.2 ml
 - 0.02 ml
- 9. The methyl orange acidity is at pH
 - 8.3
 - 9.3
 - 4.3
 - 7.3
- 10. A calibration curve is a plot of
 - Absorbance against concentration of solutions
 - Absorbance of solutions against time
 - Time against concentration of solutions
 - Concentration of solution against time